-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTRTFrame.hpp
209 lines (195 loc) · 6.63 KB
/
TRTFrame.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#ifndef _TRTFRAME_HPP_
#define _TRTFRAME_HPP_
#include <opencv4/opencv2/core.hpp>
#include <vector>
#include <map>
#include "/home/ruby/Tensorrt/trt/include/NvInfer.h"
const cv::Scalar myColor[3]{cv::Scalar(255, 0, 0), cv::Scalar(0, 0, 255), cv::Scalar(0, 255, 0)};
const int MODEL_WIDTH = 320; // 模型输入的宽度
const int MODEL_HEIGHT = 320; // 模型输入的高度
const std::vector<int> STRIDES = {8, 16, 32}; // 模型的下采样步长
const std::vector<std::vector<std::pair<float, float>>> ANCHORS = {
{{10, 13}, {16, 30}, {33, 23}},
{{30, 61}, {62, 45}, {59, 119}},
{{116, 90}, {156, 198}, {373, 326}}}; // 每个特征图对应的anchor box尺寸
class yolov5OutputDecoder
{
using pairFloat = std::pair<float, float>;
private:
int m_modelWidth;
int m_modelHeight;
int m_nbLayers;
int m_nbAnchors;
std::vector<int> m_strides;
std::vector<std::vector<pairFloat>> m_anchorsGrids;
std::vector<std::vector<pairFloat>> m_grids;
public:
yolov5OutputDecoder(int aModelWidth, int aModelHeight, const std::vector<int> &aStrides, const std::vector<std::vector<pairFloat>> &aAnchors)
: m_modelWidth(aModelWidth), m_modelHeight(aModelHeight), m_nbLayers(aStrides.size()), m_nbAnchors(aAnchors[0].size()), m_strides(aStrides), m_anchorsGrids(aAnchors), m_grids(m_nbLayers)
{
}
yolov5OutputDecoder(int aModelWidth = 640, int aModeHeight = 640) : m_modelWidth(aModelWidth), m_modelHeight(aModeHeight), m_nbLayers(STRIDES.size()), m_nbAnchors(ANCHORS[0].size()), m_strides(STRIDES), m_anchorsGrids(ANCHORS), m_grids(m_nbLayers)
{
}
~yolov5OutputDecoder() {}
void generateGrid(int width, int height, std::vector<pairFloat> &grids);
void decodeOutputs(float *outputs, int allLen, int dataLen, int boxPos);
void decodeOutputs(std::vector<float> &outputs, int dataLenm, int boxPos);
void decodeOutputs(std::vector<std::vector<float>> &outputs, int boxPos);
};
/*
* @brief 定义box的类型
*
* @note xyxyxyxy: [x1, y1, x2, y2, x3, y3, x4, y4] 逆时针四点
* xyhw_center: [x, y, w, h, center_x, center_y] 中心点坐标和宽高
* xyhw_topl: [x, y, w, h, top_left_x, top_left_y] 左上角坐标和宽高
* xyxy: [x1, y1, x2, y2] 左上角坐标和右下角坐标
*
*/
enum box_type
{
xyxyxyxy = 1,
xyhw_center,
xyhw_topl,
xyxy
};
/*
* @brief 定义推理参数
*
* @note 该结构体用于定义推理参数,包括预处理、后处理等参数
* topk: 是否使用topk输出
* topk_num: topk输出的最大数量
* cvt_code: 图像预处理时的转换代码
* input_size: 推理输入尺寸
* normalize: 是否对图像进行归一化
* hwc2chw: 是否将图像从HWC转为CHW
* type: 推理输出的box类型
* conf_pos: 推理输出中置信度的位置
* box_pos: 推理输出中box信息的起始位置
* conf_thre: 置信度阈值
* iou_thre: IOU阈值
* has_sigmoid: 网络的输出是否经过sigmoid激活
* isAnchor: 是否需要对box进行anchor转换(yolov5特性)
* classes_info: 类别信息
*/
struct InferParam
{
/*infer param*/
bool topk;
int topk_num;
/*preprocess param*/
int cvt_code;
cv::Size input_size;
bool normalize;
bool hwc2chw;
/*postprocess param*/
box_type type;
int conf_pos;
int box_pos;
float conf_thre;
float iou_thre;
bool has_sigmoid;
bool isAnchor;
/*class info*/
struct class_info
{
std::vector<std::string> classes_names;
int classes_offset;
int classes_num;
};
std::vector<class_info> classes_info;
};
/*
* @brief 3维向量类型
*
* @note 3维向量类型,用于表示输出的tensor的维度
*/
struct Dim3d
{
int dim1;
int dim2;
int dim3;
Dim3d(int dim1_, int dim2_, int dim3_)
{
dim1 = dim1_;
dim2 = dim2_;
dim3 = dim3_;
};
Dim3d(nvinfer1::Dims &dim)
{
dim1 = dim.d[0];
dim2 = dim.d[1];
dim3 = dim.d[2];
}
Dim3d()
{
dim1 = -1;
dim2 = -1;
dim3 = -1;
}
};
struct BoxInfo
{
std::vector<std::pair<int, std::string>> classes;
float confidence;
std::vector<float> box;
BoxInfo()
{
classes.clear();
confidence = 0.0f;
box.clear();
}
BoxInfo(float conf, float *box_data, box_type type) : confidence(conf), box(box_data, box_data + (type == xyxyxyxy ? 8 : 4))
{
}
};
/*
* @brief 基于TensorRT的onnx推理框架类
*
* @note 该类主要用于对TensorRT推理框架的封装,包括创建推理引擎、序列化、保存、推理、NMS等功能
*/
class TRTFrame
{
private:
yolov5OutputDecoder decoder;
Dim3d outputDims;
const std::string input_name = "input";
const std::string output_name = "output-topk";
size_t inputsz;
size_t outputsz;
nvinfer1::IHostMemory *serialized_engine;
nvinfer1::ICudaEngine *engine;
nvinfer1::IExecutionContext *context;
cudaStream_t stream;
mutable void *device_buffer[2];
float *host_buffer;
const InferParam param;
float fx, fy;
public:
TRTFrame();
explicit TRTFrame(const std::string &onnx_file, const InferParam ¶m_);
~TRTFrame();
void Create_Engine_From_Onnx(const std::string &onnx_file);
void Create_Engine_From_Serialization(const std::string &onnx_file);
void Create_Serialized_Engine(const std::string &onnx_file);
void Save_Serialized_Engine(const std::string &des);
void Save_Serialized_Engine(nvinfer1::IHostMemory *serialized_engine_, const std::string &des);
void Infer(void *input_tensor);
float IOU_xyxyxyxy(float yxyxyxy1[8], float xyxyxyxy2[8]);
float IOU_xywh_center(float xyhw1[4], float xyhw2[4]);
float IOU_xywh_topl(float xyhw1[4], float xyhw2[4]);
float IOU_xyxy(float xyxy1[4], float xyxy2[4]);
float IOU(float *pts1, float *pts2, box_type type);
void NMS(std::vector<float> &output_tensor, std::vector<std::vector<float>> &res_tensor);
void NMS(std::vector<std::vector<float>> &res_tensor);
void Preprocess(cv::Mat &src, cv::Mat &blob);
void Postprocess(std::vector<std::vector<float>> &res_tensor, std::vector<BoxInfo> &box_infos);
void Show_xyxyxyxy(cv::Mat &img, std::vector<BoxInfo> &box_infos);
void Show_xywh_center(cv::Mat &img, std::vector<BoxInfo> &box_infos);
void Show(cv::Mat &img, std::vector<BoxInfo> &box_infos, box_type type);
void Run(cv::Mat &src, std::vector<BoxInfo> &boxinfos);
// preprocess;postprocess;
};
void hwc2chw(cv::Mat &src);
int argmax(float *vec, int len);
#endif