-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_results.py
361 lines (282 loc) · 12 KB
/
process_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import glob
import pandas as pd
import nltk
import os.path
import csv
from nltk.metrics import agreement
from nltk.metrics.agreement import AnnotationTask
from nltk.metrics import masi_distance, jaccard_distance, binary_distance
import matplotlib
import matplotlib.pyplot as plt
def process_results(data, p, input_folder, output_folder):
files = glob.glob(f"{output_folder}/codyan_q*.csv")
results = {}
for file in files:
df = pd.read_csv(file)
df = df.sort_values(by=['iteration', 'response'])
question_id = file.split("_q")[1].split(".")[0]
question_results = {}
responses = df['response'].unique()
for response in responses:
response_df = df[df['response'] == response]
iterations_count = response_df['iteration'].nunique()
true_counts = response_df.drop(columns=['response', 'iteration']).sum()
ratios = (true_counts / iterations_count).to_dict()
# Filter out the ratios below 0.95
filtered_ratios = {code: ratio for code, ratio in ratios.items() if ratio >= p}
question_results[str(response)] = filtered_ratios
results[question_id] = question_results
returnval = {}
returnval['results'] = results
try:
returnval['icr'] = icr(results, input_folder)
except:
returnval['icr'] = None
# returnval['icr'] = 0
csvdata = []
csv_columns = []
max_responses = 0
for question_index, question_responses in results.items():
csv_columns.append(f'codes_{question_index}')
csv_columns.append(f'pvalues_{question_index}')
max_responses = max(max_responses, len(question_responses))
for i in range(max_responses):
csvdata.append({})
for question_index, question_responses in results.items():
question_index = int(question_index)-1
for response_index, response in question_responses.items():
response_index = int(response_index)-1
codes_array = []
pvalues_array = []
for code in response.keys():
codes_array.append(code)
pvalues_array.append(response[code])
codes_string = ','.join(str(v) for v in codes_array)
pvalues_string = ','.join(str(v) for v in pvalues_array)
csvdata[int(response_index)][f'codes_{question_index+1}'] = codes_string
csvdata[int(response_index)][f'pvalues_{question_index+1}'] = pvalues_string
for row in csvdata:
for question_index, question_responses in results.items():
question_index = int(question_index)-1
if f'codes_{question_index+1}' not in row:
row[f'codes_{question_index+1}'] = ''
if f'pvalues_{question_index+1}' not in row:
row[f'pvalues_{question_index+1}'] = ''
csv_filename = f'{output_folder}/results.csv'
with open(csv_filename, mode='w', newline='', encoding='utf-8') as file:
writer = csv.DictWriter(file, fieldnames=csv_columns)
writer.writeheader()
writer.writerows(csvdata)
return returnval
def process_results_binarymatrix(data, p,input_folder, output_folder):
files = glob.glob("output/codyan_q*.csv")
results = {}
codes_df, responses_df, reference_df, questions, codes, reference = data
for file in files:
df = pd.read_csv(file)
df = df.sort_values(by=['iteration', 'response'])
question_id = int(file.split("_q")[1].split(".")[0])
codes_for_this_question = [code for c_, code in list(codes_df[f'codes_{question_id}'].dropna().items())]
question_results = {}
responses = df['response'].unique()
for response in responses:
response_df = df[df['response'] == response]
iterations_count = response_df['iteration'].nunique()
true_counts = response_df.drop(columns=['response', 'iteration']).sum()
ratios = (true_counts / iterations_count).to_dict()
# Filter out the ratios below the threshold
filtered_ratios = {code: ratio for code, ratio in ratios.items() if ratio >= p}
question_results[str(response)] = filtered_ratios
results[question_id] = question_results
csvdata = []
csv_columns = ['response'] + codes_for_this_question
# Create a binary matrix for each question
for question_index, question_responses in results.items():
question_index = int(question_index) - 1
for response_index, response in question_responses.items():
response_index = int(response_index) - 1
if len(csvdata) <= response_index:
csvdata.append({'response': response_index + 1})
for code in codes_for_this_question:
csvdata[response_index][code] = code in response
for row in csvdata:
for code in codes_for_this_question:
if code not in row:
row[code] = False
csv_filename = f'output/results_binary_{question_id}.csv'
with open(csv_filename, mode='w', newline='', encoding='utf-8') as file:
writer = csv.DictWriter(file, fieldnames=csv_columns)
writer.writeheader()
writer.writerows(csvdata)
returnval = {}
returnval['results'] = results
try:
returnval['icr'] = icr_alt(codes_df, results, input_folder)
except:
returnval['icr'] = None
return process_results(data,p)
def icr(results, input_folder):
reference_df = pd.read_csv(f'{input_folder}/reference.csv')
task_data = []
# num_reference_rows = 10
num_reference_rows = len(reference_df)
# print(len(reference_df))
for col_name in reference_df.columns:
q_index = int(col_name.split("_")[1])
question_codes = reference_df[f'question_{q_index}']
print(len(question_codes))
for r_index, codeset in enumerate(question_codes):
try:
codeset_list = []
for code in codeset.split(","):
codeset_list.append(code.strip())
task_data.append(
('researcher', f'Q{q_index}R{int(r_index)+1}', frozenset(codeset_list))
)
except:
task_data.append(
('researcher', f'Q{q_index}R{int(r_index)+1}', frozenset())
)
for question_index, question in results.items():
question_index = int(question_index)-1
for response_index, response in question.items():
response_index = int(response_index)-1
if(response_index<num_reference_rows):
task_data.append(
('codyan', f'Q{question_index+1}R{response_index+1}', frozenset(list(response.keys())))
)
# task_data = [('coder1','Item0',frozenset(['l1','l2'])),
# ('coder2','Item0',frozenset(['l1'])),
# ('coder1','Item1',frozenset(['l1','l2'])),
# ('coder2','Item1',frozenset(['l1','l2'])),
# ('coder1','Item2',frozenset(['l1'])),
# ('coder2','Item2',frozenset(['l1']))]
task_data_empties_handled = []
for coder, doc, labels in task_data:
if(len(labels) == 0):
task_data_empties_handled.append(
(coder, doc, None)
# (coder, doc, frozenset([]))
)
else:
task_data_empties_handled.append(
(coder, doc, labels)
)
# for task in task_data_empties_handled:
# print(task)
# jaccard_task = AnnotationTask(data=task_data_empties_handled,distance = jaccard_distance)
masi_task = AnnotationTask(data=task_data_empties_handled,distance = masi_distance)
jaccard_task = AnnotationTask(data=task_data_empties_handled,distance = jaccard_distance)
# print(f"Fleiss's Kappa using MASI: {masi_task.multi_kappa()}")
# print(f"Fleiss's Kappa using Jaccard: {jaccard_task.multi_kappa()}")
# print(f"Krippendorff's Alpha using MASI: {masi_task.alpha()}")
# try:
# print(f".alpha() using MASI: {masi_task.alpha()}")
# except:
# print("oopsie")
# try:
# print(f".kappa() using MASI: {masi_task.kappa()}")
# except:
# print("oopsie")
# try:
# print(f".kappa_pairwise() using MASI: {masi_task.kappa_pairwise()}")
# except:
# print("oopsie")
# try:
# print(f".multi_kappa() using MASI: {masi_task.multi_kappa()}")
# except:
# print("oopsie")
# try:
# print(f".avg_Ao using MASI: {masi_task.avg_Ao()}")
# except:
# print("oopsie")
# try:
# print(f".pi() using MASI: {masi_task.pi()}")
# except:
# print("oopsie")
# try:
# print(f".S() using MASI: {masi_task.S()}")
# except:
# print("oopsie")
# print(f"Krippendorff's Alpha using Jaccard: {jaccard_task.alpha()}")
return masi_task.alpha()
def icr_alt(codes_df, results,input_folder, output_folder):
# ICRss = []
# for i in range(1, 50):
ICRs = {}
for file in glob.glob(f"{output_folder}/codyan_q*.csv"):
question_id = int(file.split("_q")[1].split(".")[0])
reference_df = pd.read_csv(f"{input_folder}/reference.csv")
task_data = []
num_reference_rows = len(reference_df)
question_codes = reference_df[f'question_{question_id}']
for r_index, codeset in enumerate(question_codes):
try:
codeset_list = []
for code in codeset.split(","):
codeset_list.append(code.strip())
task_data.append(
('researcher', f'Q{question_id}R{int(r_index)+1}', frozenset(codeset_list))
)
except:
task_data.append(
('researcher', f'Q{question_id}R{int(r_index)+1}', frozenset())
)
for question_index, question in results.items():
if(question_index == question_id):
question_index = int(question_index)-1
for response_index, response in question.items():
response_index = int(response_index)-1
if(response_index<num_reference_rows):
task_data.append(
('codyan', f'Q{question_index+1}R{response_index+1}', frozenset(list(response.keys())))
)
task_data_empties_handled = []
for coder, doc, labels in task_data:
if(len(labels) == 0):
task_data_empties_handled.append(
(coder, doc, None)
)
else:
task_data_empties_handled.append(
(coder, doc, labels)
)
binary = []
codes_for_this_question = [code for c_, code in list(codes_df[f'codes_{question_id}'].dropna().items())]
for coder, doc, labels in task_data:
binary_row = []
for code in codes_for_this_question:
if(code in labels):
binary_row.append(1)
else:
binary_row.append(0)
binary.append(
(coder, doc, tuple(binary_row))
)
masi_task = AnnotationTask(data=binary,distance = binary_distance)
print(f'QUESTION {question_id}')
for task in binary:
print(task)
print(masi_task.alpha())
ICRs[question_id] = masi_task.alpha()
# ICRss.append((ICRs[1], ICRs[2], ICRs[3]))
print(ICRs)
return ICRs
# Unpacking the tuples into separate lists
# x_values, y_values, z_values = zip(*ICRss)
# matplotlib.use('agg')
# # Creating the plot
# plt.figure()
# plt.plot(x_values, label='Series 1')
# plt.plot(y_values, label='Series 2')
# plt.plot(z_values, label='Series 3')
# plt.title('S')
# # plt.title('Kappa - Davies and Fleiss')
# plt.xlabel('Index')
# plt.ylabel('Values')
# plt.legend()
# Save the plot to a file
# plt.savefig('value_series_plot3.png')
# Optionally, display the plot
# plt.show()
# return ICRs