-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmot_sde_infer.py
484 lines (434 loc) · 18 KB
/
mot_sde_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import yaml
import cv2
import numpy as np
import paddle
from benchmark_utils import PaddleInferBenchmark
from preprocess import preprocess
from tracker import DeepSORTTracker
from ppdet.modeling.mot import visualization as mot_vis
from ppdet.modeling.mot.utils import Timer as MOTTimer
from ppdet.modeling.mot.utils import Detection
from paddle.inference import Config
from paddle.inference import create_predictor
from utils import argsparser, Timer, get_current_memory_mb
from infer import get_test_images, print_arguments, PredictConfig, Detector
from mot_jde_infer import write_mot_results
from infer import load_predictor
# Global dictionary
MOT_SUPPORT_MODELS = {'DeepSORT'}
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
mems = {
'cpu_rss_mb': detector.cpu_mem / len(img_list),
'gpu_rss_mb': detector.gpu_mem / len(img_list),
'gpu_util': detector.gpu_util * 100 / len(img_list)
}
perf_info = detector.det_times.report(average=True)
data_info = {
'batch_size': batch_size,
'shape': "dynamic_shape",
'data_num': perf_info['img_num']
}
log = PaddleInferBenchmark(detector.config, model_info, data_info,
perf_info, mems)
log(name)
def scale_coords(coords, input_shape, im_shape, scale_factor):
im_shape = im_shape[0]
ratio = scale_factor[0][0]
pad_w = (input_shape[1] - int(im_shape[1])) / 2
pad_h = (input_shape[0] - int(im_shape[0])) / 2
coords[:, 0::2] -= pad_w
coords[:, 1::2] -= pad_h
coords[:, 0:4] /= ratio
coords[:, :4] = np.clip(coords[:, :4], a_min=0, a_max=coords[:, :4].max())
return coords.round()
def clip_box(xyxy, input_shape, im_shape, scale_factor):
im_shape = im_shape[0]
ratio = scale_factor[0][0]
img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)]
xyxy[:, 0::2] = np.clip(xyxy[:, 0::2], a_min=0, a_max=img0_shape[1])
xyxy[:, 1::2] = np.clip(xyxy[:, 1::2], a_min=0, a_max=img0_shape[0])
return xyxy
def preprocess_reid(imgs,
w=64,
h=192,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]):
im_batch = []
for img in imgs:
img = cv2.resize(img, (w, h))
img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
img_mean = np.array(mean).reshape((3, 1, 1))
img_std = np.array(std).reshape((3, 1, 1))
img -= img_mean
img /= img_std
img = np.expand_dims(img, axis=0)
im_batch.append(img)
im_batch = np.concatenate(im_batch, 0)
return im_batch
class SDE_Detector(Detector):
"""
Args:
pred_config (object): config of model, defined by `Config(model_dir)`
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
"""
def __init__(self,
pred_config,
model_dir,
device='CPU',
run_mode='fluid',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1088,
trt_opt_shape=608,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False):
super(SDE_Detector, self).__init__(
pred_config=pred_config,
model_dir=model_dir,
device=device,
run_mode=run_mode,
batch_size=batch_size,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn)
assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
def postprocess(self, boxes, input_shape, im_shape, scale_factor,
threshold):
pred_bboxes = scale_coords(boxes[:, 2:], input_shape, im_shape,
scale_factor)
pred_bboxes = clip_box(pred_bboxes, input_shape, im_shape, scale_factor)
pred_scores = boxes[:, 1:2]
keep_mask = pred_scores[:, 0] >= threshold
return pred_bboxes[keep_mask], pred_scores[keep_mask]
def predict(self, image, threshold=0.5, warmup=0, repeats=1):
'''
Args:
image (np.ndarray): image numpy data
threshold (float): threshold of predicted box' score
Returns:
pred_bboxes, pred_scores (np.ndarray)
'''
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(image)
self.det_times.preprocess_time_s.end()
pred_bboxes, pred_scores = None, None
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(inputs[input_names[i]])
for i in range(warmup):
self.predictor.run()
output_names = self.predictor.get_output_names()
boxes_tensor = self.predictor.get_output_handle(output_names[0])
boxes = boxes_tensor.copy_to_cpu()
self.det_times.inference_time_s.start()
for i in range(repeats):
self.predictor.run()
output_names = self.predictor.get_output_names()
boxes_tensor = self.predictor.get_output_handle(output_names[0])
boxes = boxes_tensor.copy_to_cpu()
self.det_times.inference_time_s.end(repeats=repeats)
self.det_times.postprocess_time_s.start()
input_shape = inputs['image'].shape[2:]
im_shape = inputs['im_shape']
scale_factor = inputs['scale_factor']
pred_bboxes, pred_scores = self.postprocess(
boxes, input_shape, im_shape, scale_factor, threshold)
self.det_times.postprocess_time_s.end()
self.det_times.img_num += 1
return pred_bboxes, pred_scores
class SDE_ReID(object):
def __init__(self,
pred_config,
model_dir,
device='CPU',
run_mode='fluid',
batch_size=50,
trt_min_shape=1,
trt_max_shape=1088,
trt_opt_shape=608,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False):
self.pred_config = pred_config
self.predictor, self.config = load_predictor(
model_dir,
run_mode=run_mode,
batch_size=batch_size,
min_subgraph_size=self.pred_config.min_subgraph_size,
device=device,
use_dynamic_shape=self.pred_config.use_dynamic_shape,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn)
self.det_times = Timer()
self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
self.batch_size = batch_size
assert pred_config.tracker, "Tracking model should have tracker"
self.tracker = DeepSORTTracker()
def preprocess(self, crops):
crops = crops[:self.batch_size]
inputs = {}
inputs['crops'] = np.array(crops).astype('float32')
return inputs
def postprocess(self, bbox_tlwh, pred_scores, features):
detections = [
Detection(tlwh, score, feat)
for tlwh, score, feat in zip(bbox_tlwh, pred_scores, features)
]
self.tracker.predict()
online_targets = self.tracker.update(detections)
online_tlwhs = []
online_scores = []
online_ids = []
for track in online_targets:
if not track.is_confirmed() or track.time_since_update > 1:
continue
online_tlwhs.append(track.to_tlwh())
online_scores.append(1.0)
online_ids.append(track.track_id)
return online_tlwhs, online_scores, online_ids
def predict(self, crops, bbox_tlwh, pred_scores, warmup=0, repeats=1):
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(crops)
self.det_times.preprocess_time_s.end()
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(inputs[input_names[i]])
for i in range(warmup):
self.predictor.run()
output_names = self.predictor.get_output_names()
feature_tensor = self.predictor.get_output_handle(output_names[0])
features = feature_tensor.copy_to_cpu()
self.det_times.inference_time_s.start()
for i in range(repeats):
self.predictor.run()
output_names = self.predictor.get_output_names()
feature_tensor = self.predictor.get_output_handle(output_names[0])
features = feature_tensor.copy_to_cpu()
self.det_times.inference_time_s.end(repeats=repeats)
self.det_times.postprocess_time_s.start()
online_tlwhs, online_scores, online_ids = self.postprocess(
bbox_tlwh, pred_scores, features)
self.det_times.postprocess_time_s.end()
self.det_times.img_num += 1
return online_tlwhs, online_scores, online_ids
def get_crops(self, xyxy, ori_img, pred_scores, w, h):
self.det_times.preprocess_time_s.start()
crops = []
keep_scores = []
xyxy = xyxy.astype(np.int64)
ori_img = ori_img.transpose(1, 0, 2) # [h,w,3]->[w,h,3]
for i, bbox in enumerate(xyxy):
if bbox[2] <= bbox[0] or bbox[3] <= bbox[1]:
continue
crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
crops.append(crop)
keep_scores.append(pred_scores[i])
if len(crops) == 0:
return [], []
crops = preprocess_reid(crops, w, h)
self.det_times.preprocess_time_s.end()
return crops, keep_scores
def predict_image(detector, reid_model, image_list):
results = []
image_list.sort()
for i, img_file in enumerate(image_list):
frame = cv2.imread(img_file)
if FLAGS.run_benchmark:
pred_bboxes, pred_scores = detector.predict(
[frame], FLAGS.threshold, warmup=10, repeats=10)
cm, gm, gu = get_current_memory_mb()
detector.cpu_mem += cm
detector.gpu_mem += gm
detector.gpu_util += gu
print('Test iter {}, file name:{}'.format(i, img_file))
else:
pred_bboxes, pred_scores = detector.predict([frame],
FLAGS.threshold)
# process
bbox_tlwh = np.concatenate(
(pred_bboxes[:, 0:2],
pred_bboxes[:, 2:4] - pred_bboxes[:, 0:2] + 1),
axis=1)
crops, pred_scores = reid_model.get_crops(
pred_bboxes, frame, pred_scores, w=64, h=192)
if FLAGS.run_benchmark:
online_tlwhs, online_scores, online_ids = reid_model.predict(
crops, bbox_tlwh, pred_scores, warmup=10, repeats=10)
else:
online_tlwhs, online_scores, online_ids = reid_model.predict(
crops, bbox_tlwh, pred_scores)
online_im = mot_vis.plot_tracking(
frame, online_tlwhs, online_ids, online_scores, frame_id=i)
if FLAGS.save_images:
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
img_name = os.path.split(img_file)[-1]
out_path = os.path.join(FLAGS.output_dir, img_name)
cv2.imwrite(out_path, online_im)
print("save result to: " + out_path)
def predict_video(detector, reid_model, camera_id):
if camera_id != -1:
capture = cv2.VideoCapture(camera_id)
video_name = 'mot_output.mp4'
else:
capture = cv2.VideoCapture(FLAGS.video_file)
video_name = os.path.split(FLAGS.video_file)[-1]
fps = 30
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
print('frame_count', frame_count)
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
# yapf: disable
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# yapf: enable
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
out_path = os.path.join(FLAGS.output_dir, video_name)
if not FLAGS.save_images:
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
frame_id = 0
timer = MOTTimer()
results = []
while (1):
ret, frame = capture.read()
if not ret:
break
timer.tic()
pred_bboxes, pred_scores = detector.predict([frame], FLAGS.threshold)
timer.toc()
bbox_tlwh = np.concatenate(
(pred_bboxes[:, 0:2],
pred_bboxes[:, 2:4] - pred_bboxes[:, 0:2] + 1),
axis=1)
crops, pred_scores = reid_model.get_crops(
pred_bboxes, frame, pred_scores, w=64, h=192)
online_tlwhs, online_scores, online_ids = reid_model.predict(
crops, bbox_tlwh, pred_scores)
results.append((frame_id + 1, online_tlwhs, online_scores, online_ids))
fps = 1. / timer.average_time
im = mot_vis.plot_tracking(
frame,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
fps=fps)
if FLAGS.save_images:
save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
if not os.path.exists(save_dir):
os.makedirs(save_dir)
cv2.imwrite(
os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
else:
writer.write(im)
frame_id += 1
print('detect frame:%d' % (frame_id))
if camera_id != -1:
cv2.imshow('Tracking Detection', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if FLAGS.save_mot_txts:
result_filename = os.path.join(FLAGS.output_dir,
video_name.split('.')[-2] + '.txt')
write_mot_results(result_filename, results)
if FLAGS.save_images:
save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
save_dir, out_path)
os.system(cmd_str)
print('Save video in {}.'.format(out_path))
else:
writer.release()
def main():
pred_config = PredictConfig(FLAGS.model_dir)
detector = SDE_Detector(
pred_config,
FLAGS.model_dir,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn)
pred_config = PredictConfig(FLAGS.reid_model_dir)
reid_model = SDE_ReID(
pred_config,
FLAGS.reid_model_dir,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
batch_size=FLAGS.reid_batch_size,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn)
# predict from video file or camera video stream
if FLAGS.video_file is not None or FLAGS.camera_id != -1:
predict_video(detector, reid_model, FLAGS.camera_id)
else:
# predict from image
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
predict_image(detector, reid_model, img_list)
if not FLAGS.run_benchmark:
detector.det_times.info(average=True)
reid_model.det_times.info(average=True)
else:
mode = FLAGS.run_mode
det_model_dir = FLAGS.model_dir
det_model_info = {
'model_name': det_model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
bench_log(detector, img_list, det_model_info, name='Det')
reid_model_dir = FLAGS.reid_model_dir
reid_model_info = {
'model_name': reid_model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
bench_log(reid_model, img_list, reid_model_info, name='ReID')
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
print_arguments(FLAGS)
FLAGS.device = FLAGS.device.upper()
assert FLAGS.device in ['CPU', 'GPU', 'XPU'
], "device should be CPU, GPU or XPU"
main()