-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathClassificationOfText.py
63 lines (51 loc) · 2.17 KB
/
ClassificationOfText.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import pandas as pd
import time
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from xgboost import XGBClassifier
subtrainLabel = pd.read_csv('trainLabels.csv')
subtrainfeature = pd.read_csv("All3gramfeature.csv")
subtrain = pd.merge(subtrainLabel,subtrainfeature,on='Id')
labels = subtrain.Class
subtrain.drop(["Class","Id"], axis=1, inplace=True)
subtrain = subtrain.as_matrix()
data = open('classification_text.csv','a')
for i in range(20):
X_train, X_test, y_train, y_test = train_test_split(subtrain,labels,test_size=0.4)
print('%d st classisfication start' % (i))
print('%d st classisfication ' % (i), file=data)
start = time.clock()
print('决策树',file=data)
clf = DecisionTreeClassifier(random_state=11)
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions, digits=4), file=data)
print('逻辑回归',file=data)
clf = LogisticRegression()
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions, digits=4), file=data)
print('KNN近邻',file=data)
clf = KNeighborsClassifier(n_neighbors=3)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions, digits=4), file=data)
print('XGBoost',file=data)
clf = XGBClassifier(n_estimators=50, random_state=11)
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions, digits=4), file=data)
print('随机森林',file=data)
clf = RandomForestClassifier(n_estimators=10, random_state=11)
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions,digits=4), file=data)
end = time.clock()
print('%d time:'%(i),end-start, file=data)
print('time:', end - start)
print('%d st classisfication end'%(i))
data.close()