Skip to content
This repository has been archived by the owner on Mar 3, 2024. It is now read-only.

Latest commit

 

History

History
162 lines (85 loc) · 4.21 KB

exercises_3.2.md

File metadata and controls

162 lines (85 loc) · 4.21 KB

3.2 Standard notations and common functions

3.2-1

Show that if $f(n)$ and $g(n)$ are monotonically increasing functions, then so are the functions $f(n) + g(n)$ and $f(g(n))$, and if $f(n)$ and $g(n)$ are in addition nonnegative, then $f(n) \cdot g(n)$ is monotonically increasing.

  • $f(n) + g(n)$

$n \le m$

$f(n) \le f(m)$ and $g(n) \le g(m)$

$f(n) + g(n) \le f(m) + g(m)$

  • $f(g(n))$

$n \le m$

$f(n) \le f(m)$

$g(f(n)) \le g(f(m))$

  • $f(n) \cdot g(n)$

$n \le m$

$f(n) \le f(m)$ and $g(n) \le g(m)$

$f(n) \cdot g(n) \le f(m) \cdot g(m)$

3.2-2

Prove equation (3.16).

$a^{log_bc}=c^{log_ba}$ (3.16)

$a^{log_bc}=a^{\frac{log_ac}{log_ab}}=c^{\frac{1}{log_ab}}=c^{log_ba}$

3.2-3

Prove equation (3.19). Also prove that $n! = \omega(2^n)$ and $n!=o(n^n)$.

$\lg(n!)=\Theta(n \lg n)$ (3.19)

  • $\lg(n!)=\Theta(n \lg n)$

Use Stirling's approximation:

$\lg(n!) = \lg(\sqrt{2 \pi n}\left (\frac{n}{e}\right )^n e^{\alpha n})$ $=\lg(\sqrt{2 \pi n}) + \lg(\left (\frac{n}{e}\right )^n) + \lg (e^{\alpha n})$ $=\Theta(\lg \sqrt{n}) + \Theta(n\lg n) + \Theta(n)$ $=\Theta(n\lg n)$

  • $n! = \omega(2^n)$

$n!=n \cdot (n-1) \cdot \cdots \cdot 1 \ge 4 \cdot 2 \cdot \cdots \cdot 2 \cdot 1 = 2^n$

  • $n!=o(n^n)$

$n!=n \cdot (n-1) \cdot \cdots \cdot 1 \le n \cdot n \cdot \cdots \cdot n = n^n$

3.2-4 $\star$

Is the function $\left \lceil \lg n \right \rceil!$ polynomially bounded? Is the function $\left \lceil \lg \lg n \right \rceil!$ polynomially bounded?

  • $\left \lceil \lg n \right \rceil!$

$\left \lceil \lg n \right \rceil!$ $= \sqrt{2 \pi \lg n}\left (\frac{\lg n}{e}\right )^{\lg n} e^{\alpha \lg n}$ $= \Theta((\lg n)^{\lg n})$

$\lg \left \lceil \lg n \right \rceil!$ $= \Theta(\lg n \lg \lg n)$

$\lg n^p$ $=\Theta(\lg n)$

$\Theta(\lg n \lg \lg n) > \Theta(\lg n)$

$\therefore$ not bounded.

  • $\left \lceil \lg \lg n \right \rceil!$

$\left \lceil \lg \lg n \right \rceil!$ $= \Theta((\lg\lg n)^{\lg \lg n})$

$\lg \left \lceil \lg \lg n \right \rceil!$ $= \Theta(\lg \lg n \lg \lg \lg n)$ $=o(\lg^2\lg n)$

$\because$ $\lg^bn=o(n^a)$

$\therefore$ $o(\lg^2\lg n)$ $=o(\lg n)$, is polynomially bounded.

3.2-5 $\star$

Which is asymptotically larger: $\lg (\lg^{\ast}n)$ or $\lg^{\ast}(\lg n)$?

$\lg (\lg^{\ast} (2^m))$ and $\lg^{\ast}(\lg (2^m))$

$\lg (1 + \lg^{\ast}m)$ and $\lg^{\ast}m$

$\because$ $\lg (x)$ < $x$

$\therefore$ The right hand side is larger.

3.2-6

Show that the golden ratio $\phi$ and its conjugate $\hat{\phi}$ both satisfy the equation $x^2=x+1$.

$\phi = \frac{1 + \sqrt{5}}{2}$

$\phi^2=\frac{6+2\sqrt{5}}{4}=\frac{1 + \sqrt{5}}{2} + 1 = \phi + 1$

$\hat{\phi} = \frac{1 - \sqrt{5}}{2}$

$\hat{\phi}^2=\frac{6-2\sqrt{5}}{4}=\frac{1 - \sqrt{5}}{2} + 1 = \hat{\phi} + 1$

3.2-7

Prove by induction that the $i$th Fibonacci number satisfies the equality

$$ F_i=\frac{\phi^{i}-\hat{\phi^i}}{\sqrt{5}} $$

where $\phi$ is the golden ratio and $\hat{\phi}$ is its conjugate.

$F_0=0$, $\frac{\phi^{0}-\hat{\phi^0}}{\sqrt{5}}=0$

$F_1=1$, $\frac{\phi-\hat{\phi}}{\sqrt{5}}=1$

Suppose $F_{i-2}=\frac{\phi^{i-2}-\hat{\phi^{i-2}}}{\sqrt{5}}$ and $F_{i-1}=\frac{\phi^{i-1}-\hat{\phi^{i-1}}}{\sqrt{5}}$,

$F_i=F_{i-2}+F_{i-1}=\frac{1}{\sqrt{5}}(\phi^{i-2}-\hat{\phi^{i-2}} + \phi^{i-1}-\hat{\phi^{i-1}})$

Based on the previous exercise,

$\phi^{i-2} + \phi^{i-1} = \phi^{i-2}(1+\phi) = \phi^{i-2}\phi^2 = \phi ^ i$

$\therefore$ $F_i=\frac{\phi^{i}-\hat{\phi^i}}{\sqrt{5}}$

3.2-8

Show that $k \ln k = \Theta(n)$ implies $k = \Theta(n / \ln n)$.

$c_1n \le k \ln k \le c_2n$

$\ln (c_1n) \le \ln(k \ln k) \le \ln (c_2n)$

$\ln c_1 + \ln n \le \ln k + \ln \ln k \le \ln c_2 + \ln n$

$\because$ $\ln k + \ln \ln k \le 2\ln k \ge \ln c_1 + \ln n$

$\therefore$ $\frac{\ln k}{\ln n} \ge \frac{1}{2}$

$\because$ $\ln k + \ln \ln k \ge \ln k \le \ln c_2 + \ln n$

$\therefore$ $\frac{\ln k}{\ln n} \le 1$

$\because$ $c_1n \le k \ln k \le c_2n$

$\therefore$ $\frac{c_1 n}{\ln n} \le \frac{k \ln k}{\ln n} \le \frac{c_2 n}{\ln n}$

$\therefore$ $\frac{c_1 n}{\ln n} \le \frac{k \ln k}{\ln n} \le k$ and $\frac{c_2 n}{\ln n} \ge \frac{k \ln k}{\ln n} \ge \frac{1}{2}k$

$\therefore$ $c_1\frac{n}{\ln n} \le k \le (2c_2)\frac{n}{\ln n}$

$\therefore$ $k = \Theta(n / \ln n)$