This repository was archived by the owner on Mar 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlayer_normalization.py
61 lines (51 loc) · 1.94 KB
/
layer_normalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import torch.nn as nn
__all__ = ['LayerNormalization']
class LayerNormalization(nn.Module):
def __init__(self,
normal_shape,
gamma=True,
beta=True,
epsilon=1e-10):
"""Layer normalization layer
See: [Layer Normalization](https://arxiv.org/pdf/1607.06450.pdf)
:param normal_shape: The shape of the input tensor or the last dimension of the input tensor.
:param gamma: Add a scale parameter if it is True.
:param beta: Add an offset parameter if it is True.
:param epsilon: Epsilon for calculating variance.
"""
super(LayerNormalization, self).__init__()
if isinstance(normal_shape, int):
normal_shape = (normal_shape,)
else:
normal_shape = (normal_shape[-1],)
self.normal_shape = torch.Size(normal_shape)
self.epsilon = epsilon
if gamma:
self.gamma = nn.Parameter(torch.Tensor(*normal_shape))
else:
self.register_parameter('gamma', None)
if beta:
self.beta = nn.Parameter(torch.Tensor(*normal_shape))
else:
self.register_parameter('beta', None)
self.reset_parameters()
def reset_parameters(self):
if self.gamma is not None:
self.gamma.data.fill_(1)
if self.beta is not None:
self.beta.data.zero_()
def forward(self, x):
mean = x.mean(dim=-1, keepdim=True)
var = ((x - mean) ** 2).mean(dim=-1, keepdim=True)
std = (var + self.epsilon).sqrt()
y = (x - mean) / std
if self.gamma is not None:
y *= self.gamma
if self.beta is not None:
y += self.beta
return y
def extra_repr(self):
return 'normal_shape={}, gamma={}, beta={}, epsilon={}'.format(
self.normal_shape, self.gamma is not None, self.beta is not None, self.epsilon,
)