|
37 | 37 | },
|
38 | 38 | {
|
39 | 39 | "cell_type": "code",
|
40 |
| - "execution_count": 128, |
41 |
| - "metadata": { |
42 |
| - "collapsed": false |
43 |
| - }, |
| 40 | + "execution_count": 1, |
| 41 | + "metadata": {}, |
44 | 42 | "outputs": [
|
45 | 43 | {
|
46 | 44 | "name": "stdout",
|
47 | 45 | "output_type": "stream",
|
48 | 46 | "text": [
|
49 | 47 | "Populating the interactive namespace from numpy and matplotlib\n"
|
50 | 48 | ]
|
51 |
| - }, |
52 |
| - { |
53 |
| - "name": "stderr", |
54 |
| - "output_type": "stream", |
55 |
| - "text": [ |
56 |
| - "WARNING: pylab import has clobbered these variables: ['clf', 'permutation']\n", |
57 |
| - "`%matplotlib` prevents importing * from pylab and numpy\n" |
58 |
| - ] |
59 | 49 | }
|
60 | 50 | ],
|
61 | 51 | "source": [
|
|
70 | 60 | },
|
71 | 61 | {
|
72 | 62 | "cell_type": "code",
|
73 |
| - "execution_count": 129, |
74 |
| - "metadata": { |
75 |
| - "collapsed": false |
76 |
| - }, |
| 63 | + "execution_count": 2, |
| 64 | + "metadata": {}, |
77 | 65 | "outputs": [
|
78 | 66 | {
|
79 | 67 | "name": "stdout",
|
|
90 | 78 | },
|
91 | 79 | {
|
92 | 80 | "cell_type": "code",
|
93 |
| - "execution_count": 130, |
94 |
| - "metadata": { |
95 |
| - "collapsed": true |
96 |
| - }, |
| 81 | + "execution_count": 3, |
| 82 | + "metadata": {}, |
97 | 83 | "outputs": [],
|
98 | 84 | "source": [
|
99 | 85 | "def load_pose_data(i):\n",
|
|
109 | 95 | },
|
110 | 96 | {
|
111 | 97 | "cell_type": "code",
|
112 |
| - "execution_count": 142, |
| 98 | + "execution_count": 4, |
113 | 99 | "metadata": {
|
114 |
| - "collapsed": false, |
115 | 100 | "scrolled": false
|
116 | 101 | },
|
117 | 102 | "outputs": [
|
118 | 103 | {
|
119 | 104 | "name": "stdout",
|
120 | 105 | "output_type": "stream",
|
121 | 106 | "text": [
|
122 |
| - "total number of data 221\n" |
| 107 | + "total number of data 222\n" |
123 | 108 | ]
|
124 | 109 | }
|
125 | 110 | ],
|
|
139 | 124 | },
|
140 | 125 | {
|
141 | 126 | "cell_type": "code",
|
142 |
| - "execution_count": 132, |
143 |
| - "metadata": { |
144 |
| - "collapsed": false |
145 |
| - }, |
| 127 | + "execution_count": 5, |
| 128 | + "metadata": {}, |
146 | 129 | "outputs": [],
|
147 | 130 | "source": [
|
148 | 131 | "# shuffule data\n",
|
|
162 | 145 | },
|
163 | 146 | {
|
164 | 147 | "cell_type": "code",
|
165 |
| - "execution_count": 133, |
166 |
| - "metadata": { |
167 |
| - "collapsed": false |
168 |
| - }, |
| 148 | + "execution_count": 6, |
| 149 | + "metadata": {}, |
169 | 150 | "outputs": [],
|
170 | 151 | "source": [
|
171 | 152 | "clf = svm.SVC(gamma=0.001, C=100.)"
|
|
180 | 161 | },
|
181 | 162 | {
|
182 | 163 | "cell_type": "code",
|
183 |
| - "execution_count": 134, |
184 |
| - "metadata": { |
185 |
| - "collapsed": false |
186 |
| - }, |
| 164 | + "execution_count": 7, |
| 165 | + "metadata": {}, |
187 | 166 | "outputs": [
|
188 | 167 | {
|
189 | 168 | "data": {
|
190 | 169 | "text/plain": [
|
191 |
| - "SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,\n", |
192 |
| - " gamma=0.001, kernel='rbf', max_iter=-1, probability=False,\n", |
193 |
| - " random_state=None, shrinking=True, tol=0.001, verbose=False)" |
| 170 | + "SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0,\n", |
| 171 | + " decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',\n", |
| 172 | + " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", |
| 173 | + " tol=0.001, verbose=False)" |
194 | 174 | ]
|
195 | 175 | },
|
196 |
| - "execution_count": 134, |
| 176 | + "execution_count": 7, |
197 | 177 | "metadata": {},
|
198 | 178 | "output_type": "execute_result"
|
199 | 179 | }
|
|
212 | 192 | },
|
213 | 193 | {
|
214 | 194 | "cell_type": "code",
|
215 |
| - "execution_count": 135, |
216 |
| - "metadata": { |
217 |
| - "collapsed": false |
218 |
| - }, |
| 195 | + "execution_count": 9, |
| 196 | + "metadata": {}, |
219 | 197 | "outputs": [
|
220 | 198 | {
|
221 | 199 | "data": {
|
222 | 200 | "text/plain": [
|
223 |
| - "(array([10]), 10)" |
| 201 | + "(array([10]), array([10]))" |
224 | 202 | ]
|
225 | 203 | },
|
226 |
| - "execution_count": 135, |
| 204 | + "execution_count": 9, |
227 | 205 | "metadata": {},
|
228 | 206 | "output_type": "execute_result"
|
229 | 207 | }
|
230 | 208 | ],
|
231 | 209 | "source": [
|
232 |
| - "clf.predict(all_data[-1]), all_target[-1]" |
| 210 | + "clf.predict(all_data[-1:]), all_target[-1:]" |
233 | 211 | ]
|
234 | 212 | },
|
235 | 213 | {
|
236 | 214 | "cell_type": "code",
|
237 |
| - "execution_count": 136, |
238 |
| - "metadata": { |
239 |
| - "collapsed": false |
240 |
| - }, |
| 215 | + "execution_count": 10, |
| 216 | + "metadata": {}, |
241 | 217 | "outputs": [],
|
242 | 218 | "source": [
|
243 | 219 | "def evaluate(expected, predicted):\n",
|
|
248 | 224 | },
|
249 | 225 | {
|
250 | 226 | "cell_type": "code",
|
251 |
| - "execution_count": 137, |
252 |
| - "metadata": { |
253 |
| - "collapsed": false |
254 |
| - }, |
| 227 | + "execution_count": 11, |
| 228 | + "metadata": {}, |
255 | 229 | "outputs": [
|
256 | 230 | {
|
257 | 231 | "name": "stdout",
|
|
260 | 234 | "Classification report:\n",
|
261 | 235 | " precision recall f1-score support\n",
|
262 | 236 | "\n",
|
263 |
| - " 0 1.00 1.00 1.00 7\n", |
| 237 | + " 0 1.00 1.00 1.00 5\n", |
264 | 238 | " 1 1.00 1.00 1.00 7\n",
|
265 |
| - " 2 1.00 1.00 1.00 15\n", |
266 |
| - " 3 1.00 1.00 1.00 5\n", |
| 239 | + " 2 1.00 1.00 1.00 16\n", |
| 240 | + " 3 1.00 1.00 1.00 7\n", |
267 | 241 | " 4 0.95 1.00 0.97 18\n",
|
268 |
| - " 5 1.00 1.00 1.00 14\n", |
269 |
| - " 6 1.00 1.00 1.00 15\n", |
270 |
| - " 7 1.00 0.86 0.92 7\n", |
| 242 | + " 5 1.00 1.00 1.00 13\n", |
| 243 | + " 6 1.00 1.00 1.00 13\n", |
| 244 | + " 7 1.00 0.80 0.89 5\n", |
271 | 245 | " 8 1.00 1.00 1.00 19\n",
|
272 |
| - " 9 1.00 1.00 1.00 6\n", |
273 |
| - " 10 1.00 1.00 1.00 41\n", |
| 246 | + " 9 1.00 1.00 1.00 10\n", |
| 247 | + " 10 1.00 1.00 1.00 42\n", |
274 | 248 | "\n",
|
275 |
| - "avg / total 0.99 0.99 0.99 154\n", |
| 249 | + "avg / total 0.99 0.99 0.99 155\n", |
276 | 250 | "\n",
|
277 | 251 | "\n",
|
278 | 252 | "Confusion matrix:\n",
|
279 |
| - "[[ 7 0 0 0 0 0 0 0 0 0 0]\n", |
| 253 | + "[[ 5 0 0 0 0 0 0 0 0 0 0]\n", |
280 | 254 | " [ 0 7 0 0 0 0 0 0 0 0 0]\n",
|
281 |
| - " [ 0 0 15 0 0 0 0 0 0 0 0]\n", |
282 |
| - " [ 0 0 0 5 0 0 0 0 0 0 0]\n", |
| 255 | + " [ 0 0 16 0 0 0 0 0 0 0 0]\n", |
| 256 | + " [ 0 0 0 7 0 0 0 0 0 0 0]\n", |
283 | 257 | " [ 0 0 0 0 18 0 0 0 0 0 0]\n",
|
284 |
| - " [ 0 0 0 0 0 14 0 0 0 0 0]\n", |
285 |
| - " [ 0 0 0 0 0 0 15 0 0 0 0]\n", |
286 |
| - " [ 0 0 0 0 1 0 0 6 0 0 0]\n", |
| 258 | + " [ 0 0 0 0 0 13 0 0 0 0 0]\n", |
| 259 | + " [ 0 0 0 0 0 0 13 0 0 0 0]\n", |
| 260 | + " [ 0 0 0 0 1 0 0 4 0 0 0]\n", |
287 | 261 | " [ 0 0 0 0 0 0 0 0 19 0 0]\n",
|
288 |
| - " [ 0 0 0 0 0 0 0 0 0 6 0]\n", |
289 |
| - " [ 0 0 0 0 0 0 0 0 0 0 41]]\n" |
| 262 | + " [ 0 0 0 0 0 0 0 0 0 10 0]\n", |
| 263 | + " [ 0 0 0 0 0 0 0 0 0 0 42]]\n" |
290 | 264 | ]
|
291 | 265 | }
|
292 | 266 | ],
|
|
308 | 282 | },
|
309 | 283 | {
|
310 | 284 | "cell_type": "code",
|
311 |
| - "execution_count": 138, |
312 |
| - "metadata": { |
313 |
| - "collapsed": false |
314 |
| - }, |
| 285 | + "execution_count": 12, |
| 286 | + "metadata": {}, |
315 | 287 | "outputs": [
|
316 | 288 | {
|
317 | 289 | "name": "stdout",
|
|
320 | 292 | "Classification report:\n",
|
321 | 293 | " precision recall f1-score support\n",
|
322 | 294 | "\n",
|
323 |
| - " 0 1.00 1.00 1.00 3\n", |
| 295 | + " 0 1.00 1.00 1.00 5\n", |
324 | 296 | " 1 1.00 1.00 1.00 3\n",
|
325 |
| - " 2 1.00 1.00 1.00 5\n", |
326 |
| - " 3 1.00 1.00 1.00 5\n", |
| 297 | + " 2 1.00 1.00 1.00 4\n", |
| 298 | + " 3 1.00 1.00 1.00 3\n", |
327 | 299 | " 4 1.00 1.00 1.00 12\n",
|
328 |
| - " 5 1.00 1.00 1.00 8\n", |
329 |
| - " 6 1.00 1.00 1.00 4\n", |
330 |
| - " 7 1.00 1.00 1.00 4\n", |
331 |
| - " 8 1.00 0.86 0.92 7\n", |
332 |
| - " 9 1.00 1.00 1.00 5\n", |
333 |
| - " 10 0.92 1.00 0.96 11\n", |
| 300 | + " 5 1.00 1.00 1.00 10\n", |
| 301 | + " 6 1.00 1.00 1.00 6\n", |
| 302 | + " 7 1.00 1.00 1.00 6\n", |
| 303 | + " 8 1.00 1.00 1.00 7\n", |
| 304 | + " 9 1.00 1.00 1.00 1\n", |
| 305 | + " 10 1.00 1.00 1.00 10\n", |
334 | 306 | "\n",
|
335 |
| - "avg / total 0.99 0.99 0.98 67\n", |
| 307 | + "avg / total 1.00 1.00 1.00 67\n", |
336 | 308 | "\n",
|
337 | 309 | "\n",
|
338 | 310 | "Confusion matrix:\n",
|
339 |
| - "[[ 3 0 0 0 0 0 0 0 0 0 0]\n", |
| 311 | + "[[ 5 0 0 0 0 0 0 0 0 0 0]\n", |
340 | 312 | " [ 0 3 0 0 0 0 0 0 0 0 0]\n",
|
341 |
| - " [ 0 0 5 0 0 0 0 0 0 0 0]\n", |
342 |
| - " [ 0 0 0 5 0 0 0 0 0 0 0]\n", |
| 313 | + " [ 0 0 4 0 0 0 0 0 0 0 0]\n", |
| 314 | + " [ 0 0 0 3 0 0 0 0 0 0 0]\n", |
343 | 315 | " [ 0 0 0 0 12 0 0 0 0 0 0]\n",
|
344 |
| - " [ 0 0 0 0 0 8 0 0 0 0 0]\n", |
345 |
| - " [ 0 0 0 0 0 0 4 0 0 0 0]\n", |
346 |
| - " [ 0 0 0 0 0 0 0 4 0 0 0]\n", |
347 |
| - " [ 0 0 0 0 0 0 0 0 6 0 1]\n", |
348 |
| - " [ 0 0 0 0 0 0 0 0 0 5 0]\n", |
349 |
| - " [ 0 0 0 0 0 0 0 0 0 0 11]]\n" |
| 316 | + " [ 0 0 0 0 0 10 0 0 0 0 0]\n", |
| 317 | + " [ 0 0 0 0 0 0 6 0 0 0 0]\n", |
| 318 | + " [ 0 0 0 0 0 0 0 6 0 0 0]\n", |
| 319 | + " [ 0 0 0 0 0 0 0 0 7 0 0]\n", |
| 320 | + " [ 0 0 0 0 0 0 0 0 0 1 0]\n", |
| 321 | + " [ 0 0 0 0 0 0 0 0 0 0 10]]\n" |
350 | 322 | ]
|
351 | 323 | }
|
352 | 324 | ],
|
|
371 | 343 | },
|
372 | 344 | {
|
373 | 345 | "cell_type": "code",
|
374 |
| - "execution_count": 139, |
375 |
| - "metadata": { |
376 |
| - "collapsed": false |
377 |
| - }, |
| 346 | + "execution_count": 13, |
| 347 | + "metadata": {}, |
378 | 348 | "outputs": [],
|
379 | 349 | "source": [
|
380 | 350 | "import pickle\n",
|
|
391 | 361 | },
|
392 | 362 | {
|
393 | 363 | "cell_type": "code",
|
394 |
| - "execution_count": 140, |
| 364 | + "execution_count": 15, |
395 | 365 | "metadata": {
|
396 |
| - "collapsed": false, |
397 | 366 | "scrolled": true
|
398 | 367 | },
|
399 | 368 | "outputs": [
|
400 | 369 | {
|
401 | 370 | "data": {
|
402 | 371 | "text/plain": [
|
403 |
| - "(array([10]), 10)" |
| 372 | + "(array([10]), array([10]))" |
404 | 373 | ]
|
405 | 374 | },
|
406 |
| - "execution_count": 140, |
| 375 | + "execution_count": 15, |
407 | 376 | "metadata": {},
|
408 | 377 | "output_type": "execute_result"
|
409 | 378 | }
|
410 | 379 | ],
|
411 | 380 | "source": [
|
412 | 381 | "clf2 = pickle.load(open(ROBOT_POSE_CLF))\n",
|
413 |
| - "clf2.predict(all_data[-1]), all_target[-1]" |
| 382 | + "clf2.predict(all_data[-1:]), all_target[-1:]" |
414 | 383 | ]
|
415 | 384 | },
|
416 | 385 | {
|
417 | 386 | "cell_type": "code",
|
418 |
| - "execution_count": 141, |
419 |
| - "metadata": { |
420 |
| - "collapsed": false |
421 |
| - }, |
| 387 | + "execution_count": 17, |
| 388 | + "metadata": {}, |
422 | 389 | "outputs": [
|
423 | 390 | {
|
424 | 391 | "name": "stdout",
|
|
433 | 400 | "'Back'"
|
434 | 401 | ]
|
435 | 402 | },
|
436 |
| - "execution_count": 141, |
| 403 | + "execution_count": 17, |
437 | 404 | "metadata": {},
|
438 | 405 | "output_type": "execute_result"
|
439 | 406 | }
|
|
442 | 409 | "test_data = [0] * len(all_data[-1])\n",
|
443 | 410 | "test_data[-1] = -1.5\n",
|
444 | 411 | "print test_data\n",
|
445 |
| - "classes[clf2.predict(test_data)[0]]" |
| 412 | + "classes[clf2.predict([test_data])[0]]" |
446 | 413 | ]
|
447 | 414 | },
|
448 | 415 | {
|
|
488 | 455 | }
|
489 | 456 | },
|
490 | 457 | "nbformat": 4,
|
491 |
| - "nbformat_minor": 0 |
| 458 | + "nbformat_minor": 1 |
492 | 459 | }
|
0 commit comments