-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathextract_embeddings.py
260 lines (220 loc) · 8.93 KB
/
extract_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import argparse
import glob
import os
from pathlib import Path
import h5py
import numpy as np
import pandas as pd
import torch
import torchaudio
import yaml
from tqdm import tqdm
from desed_task.dataio.datasets import read_audio
from desed_task.utils.download import download_from_url
from train_pretrained import resample_data_generate_durations
parser = argparse.ArgumentParser("Extract Embeddings with Audioset Pretrained Models")
class WavDataset(torch.utils.data.Dataset):
def __init__(self, folder, pad_to=10, fs=16000, feats_pipeline=None):
self.fs = fs
self.pad_to = pad_to * fs if pad_to is not None else None
self.examples = glob.glob(os.path.join(folder, "*.wav"))
self.feats_pipeline = feats_pipeline
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
c_ex = self.examples[item]
mixture, _, _, padded_indx = read_audio(c_ex, False, False, self.pad_to)
if self.feats_pipeline is not None:
mixture = self.feats_pipeline(mixture)
return mixture, Path(c_ex).stem
def extract(batch_size, folder, dset_name, torch_dset, embedding_model, use_gpu=True):
Path(folder).mkdir(parents=True, exist_ok=True)
f = h5py.File(os.path.join(folder, "{}.hdf5".format(dset_name)), "w")
if type(embedding_model).__name__ == "Cnn14_16k":
emb_size = int(256 * 8)
else:
emb_size = 768
global_embeddings = f.create_dataset(
"global_embeddings", (len(torch_dset), emb_size), dtype=np.float32
)
frame_embeddings = f.create_dataset(
"frame_embeddings", (len(torch_dset), emb_size, 496), dtype=np.float32
)
filenames_emb = f.create_dataset(
"filenames", data=["example_00.wav"] * len(torch_dset)
)
dloader = torch.utils.data.DataLoader(
torch_dset, batch_size=batch_size, drop_last=False
)
global_indx = 0
for i, batch in enumerate(tqdm(dloader)):
feats, filenames = batch
if use_gpu:
feats = feats.cuda()
with torch.inference_mode():
emb = embedding_model(feats)
c_glob_emb = emb["global"]
c_frame_emb = emb["frame"]
# enumerate, convert to numpy and write to h5py
bsz = feats.shape[0]
for b_indx in range(bsz):
global_embeddings[global_indx] = c_glob_emb[b_indx].detach().cpu().numpy()
frame_embeddings[global_indx] = c_frame_emb[b_indx].detach().cpu().numpy()
filenames_emb[global_indx] = filenames[b_indx]
global_indx += 1
if __name__ == "__main__":
parser.add_argument("--output_dir", default="./embeddings", help="Output directory")
parser.add_argument(
"--conf_file",
default="./confs/pretrained.yaml",
help="The configuration file with all the experiment parameters.",
)
parser.add_argument(
"--pretrained_model",
default="beats",
help="The pretrained model to use," "choose between panns and ast",
)
parser.add_argument("--use_gpu", default="1", help="0 does not use GPU, 1 use GPU")
parser.add_argument(
"--batch_size",
default="8",
help="Batch size for model inference, used to speed up the embedding extraction.",
)
parser.add_argument(
"--eval_set",
default="store_true",
help="If you want to extract the embeddings also on the eval set.",
)
args = parser.parse_args()
assert args.pretrained_model in [
"beats",
"panns",
"ast",
], "pretrained model must be either panns or ast"
with open(args.conf_file, "r") as f:
config = yaml.safe_load(f)
output_dir = os.path.join(args.output_dir, args.pretrained_model)
resample_data_generate_durations(config["data"], False, args.eval_set)
# loading model
if args.pretrained_model == "ast":
# need feature extraction with torchaudio compliance feats
class ASTFeatsExtraction:
# need feature extraction in dataloader because kaldi compliant torchaudio fbank are used (no gpu support)
def __init__(
self,
audioset_mean=-4.2677393,
audioset_std=4.5689974,
target_length=1024,
):
super(ASTFeatsExtraction, self).__init__()
self.audioset_mean = audioset_mean
self.audioset_std = audioset_std
self.target_length = target_length
def __call__(self, waveform):
waveform = waveform - torch.mean(waveform, -1)
fbank = torchaudio.compliance.kaldi.fbank(
waveform.unsqueeze(0),
htk_compat=True,
sample_frequency=16000,
use_energy=False,
window_type="hanning",
num_mel_bins=128,
dither=0.0,
frame_shift=10,
)
fbank = torch.nn.functional.pad(
fbank,
(0, 0, 0, self.target_length - fbank.shape[0]),
mode="constant",
)
fbank = (fbank - self.audioset_mean) / (self.audioset_std * 2)
return fbank
feature_extraction = ASTFeatsExtraction()
from local.ast.ast_models import ASTModel
pretrained = ASTModel(
label_dim=527,
fstride=10,
tstride=10,
input_fdim=128,
input_tdim=1024,
imagenet_pretrain=True,
audioset_pretrain=True,
model_size="base384",
)
elif args.pretrained_model == "panns":
feature_extraction = None # integrated in the model
download_from_url(
"https://zenodo.org/record/3987831/files/Cnn14_16k_mAP%3D0.438.pth?download=1",
"./pretrained_models/Cnn14_16k_mAP%3D0.438.pth",
)
# use pannss as additional feature
from local.panns.models import Cnn14_16k
pretrained = Cnn14_16k(freeze_bn=True, use_specaugm=True)
pretrained.load_state_dict(
torch.load("./pretrained_models/Cnn14_16k_mAP%3D0.438.pth")["model"],
strict=False,
)
elif args.pretrained_model == "beats":
feature_extraction = None # integrated in the model
# use beats as additional feature
from local.beats.BEATs import BEATsModel
try:
pretrained = BEATsModel(cfg_path="./pretrained_models/BEATS_iter3_plus_AS2M.pt")
except:
raise RuntimeError(f"Unfortunately automatic download of BEATs model is not longer possible, "
f"you need to download it manually from https://github.com/microsoft/unilm/blob/master/beats/README.md.\n"
f"We use BEATs_iter3+ AS2M. Please download it and copy it into a new folder called pretrained_models as: {os.getcwd()}/pretrained_models.")
else:
raise NotImplementedError
use_gpu = int(args.use_gpu)
if use_gpu:
pretrained = pretrained.cuda()
pretrained.eval()
synth_df = pd.read_csv(config["data"]["synth_tsv"], sep="\t")
synth_set = WavDataset(
config["data"]["synth_folder"], feats_pipeline=feature_extraction
)
strong_set = WavDataset(
config["data"]["strong_folder"], feats_pipeline=feature_extraction
)
weak_set = WavDataset(
config["data"]["weak_folder"], feats_pipeline=feature_extraction
)
unlabeled_set = WavDataset(
config["data"]["unlabeled_folder"], feats_pipeline=feature_extraction
)
synth_df_val = pd.read_csv(config["data"]["synth_val_tsv"], sep="\t")
synth_val = WavDataset(
config["data"]["synth_val_folder"], feats_pipeline=feature_extraction
)
weak_val = WavDataset(
config["data"]["weak_folder"], feats_pipeline=feature_extraction
)
devtest_dataset = WavDataset(
config["data"]["test_folder"], feats_pipeline=feature_extraction
)
eval_dataset = WavDataset(
config["data"]["eval_folder"], feats_pipeline=feature_extraction
)
# now extract features for MAESTRO too
maestro_real_dev = WavDataset(
config["data"]["real_maestro_val_folder"], feats_pipeline=feature_extraction
)
maestro_real_train = WavDataset(
config["data"]["real_maestro_train_folder"], feats_pipeline=feature_extraction
)
for k, elem in {
"synth_train": synth_set,
"weak_train": weak_set,
"strong_train": strong_set,
"unlabeled_train": unlabeled_set,
"synth_val": synth_val,
"weak_val": weak_val,
"devtest": devtest_dataset,
"eval": eval_dataset,
"maestro_real_dev": maestro_real_dev,
"maestro_real_train": maestro_real_train,
}.items():
# for k, elem in {"strong_train": strong_set}.items():
# for k, elem in {"devtest": devtest_dataset}.items():
extract(int(args.batch_size), output_dir, k, elem, pretrained, use_gpu)