-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVerification.py
168 lines (138 loc) · 4.38 KB
/
Verification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Verification code using Sarno any spectrum for a breast with a diamter 16 cm, radius of 2xradius, and glandularity of 50%. Using the defined keV, I, and coefficients the normalized glandular dose can be computed. The correct value for these parameters
is 0.03614995451146596. The mean glandular dose was computed using the parameters of 300 projections, 0.5 mAs, and an input air kerma of 5 mR.
"""
import sys
import numpy as np
from dose_equations import (
Sarno_mono_dgn,
Sarno_poly_dgn,
sarno_dgnct,
Hernandez_hetero_mono_dgn,
exposure_per_fluence,
Sechopoulos_poly_dgn,
)
def exposure_per_fluence(E):
exposure = np.zeros(len(E))
for i in range(len(exposure)):
keV = E[i]
temp = (
(
(
-5.023290717769674e-6
+ 1.810595449064631e-7
+ np.sqrt(keV)
+ np.log(keV)
+ 0.008838658459816926 / keV**2
)
** (10**-3)
)
/ 1000
* 0.1145
)
exposure[i] = temp
return exposure
def dgn_calculate(a, b, c, d, e, f, g, h, keVs):
dgn = np.zeros(len(keVs))
for i in range(len(keVs)):
E = keVs[i]
temp = (
a * 10 ** (-14) * E**8
+ b * 10 ** (-12) * E**7
+ c * 10 ** (-10) * E**6
+ d * 10 ** (-8) * E**5
+ e * 10 ** (-6) * E**4
+ f * 10 ** (-4) * E**3
+ g * 10 ** (-3) * E**2
+ h * 10 ** (-2) * E
)
dgn[i] = temp
return dgn
def pDgN_calculate_denominator(I, exposure):
total = I * exposure
pDgN_denom = np.sum(total)
return pDgN_denom
def pDgN_calculate_numerator(I, dgn, exposure):
total = I * exposure * dgn
pDgN_num = sum(total)
return pDgN_num
def calculate_pDgNct(*values):
keV = values[2]
I = values[3]
psiE = np.array(list(map(exposure_per_fluence, keV)))
if values[0] == "Sarno Koning":
variables = values[1]
DgNctE = np.array(
list(
map(
sarno_dgnct,
variables[:, 0],
variables[:, 1],
variables[:, 2],
variables[:, 3],
variables[:, 4],
variables[:, 5],
variables[:, 6],
variables[:, 7],
keV,
)
)
)
pDgN = np.sum(I * psiE * DgNctE) / np.sum(I * psiE)
elif values[0] == "Hernandez":
DgN_list = np.array(values[1])
pDgN = np.sum(I * psiE * DgN_list) / (np.sum(I * psiE))
return pDgN
# calculate mgd input air kerma for 1 projection
def calculate_mgd(
air_KERMA, dgn, number_of_projections, mAs, air_KERMA_input_units, output_units
):
# Convert air kerma input to mGy if it is not already in mGy
if air_KERMA_input_units != "mGy":
if air_KERMA_input_units == "mrad":
air_KERMA = air_KERMA * 0.01 # convert from mrad air kerma to mGy
elif air_KERMA_input_units == "R":
air_KERMA = air_KERMA * 8.77 # convert from R to mGy
elif air_KERMA_input_units == "mR":
air_KERMA = air_KERMA * 0.00877 # convert from mR to mGy
# Calculate MGD in mGy/mGy
mgd = air_KERMA * dgn * float(number_of_projections) * mAs
# Convert MGD to mrad if output units are mrad
if output_units == "mrad":
mgd = mgd * 100 # converts mgd to mrad
return mgd
a = -0.41324119391158
b = 4.88540710576677
c = -13.0460380815292
d = 15.3913804609064
e = -9.19621868949206
f = 2.66123817129083
g = -2.67974610124986
h = 0.883219836298924
air_KERMA = 5.0 # mR
number_of_projections = 300
mAs = 0.5
keV = np.array([10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14])
I = np.array(
[
6.20275e2,
2.26229e2,
5.25667e2,
2.39324e3,
1.45979e3,
2.17293e3,
3.36611e3,
4.89394e3,
6.61405e3,
]
)
exposure = exposure_per_fluence(keV)
dgn = dgn_calculate(a, b, c, d, e, f, g, h, keV)
pDgN_num = pDgN_calculate_numerator(I, dgn, exposure)
pDgN_denom = pDgN_calculate_denominator(I, exposure)
pDgN = pDgN_num / pDgN_denom
print("pDgN =", pDgN)
mgd = calculate_mgd(air_KERMA, pDgN, number_of_projections, mAs, "mR", "mGy")
print("mgd =", mgd)