forked from Project-MONAI/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate.py
161 lines (126 loc) · 5.12 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
import distutils.util
import json
import logging
import os
import sys
import time
import torch
import train
from monai.apps.deepgrow.interaction import Interaction
from monai.engines import SupervisedEvaluator
from monai.handlers import (
StatsHandler,
TensorBoardStatsHandler,
from_engine,
MeanDice,
)
from monai.inferers import SimpleInferer
from monai.utils import set_determinism
from monai.transforms import (
Compose,
EnsureTyped,
Activationsd,
AsDiscreted,
SaveImaged,
)
def create_validator(args, click):
set_determinism(seed=args.seed)
device = torch.device("cuda" if args.use_gpu else "cpu")
pre_transforms = train.get_pre_transforms(args.roi_size, args.model_size, args.dimensions)
click_transforms = train.get_click_transforms()
# define training components
network = train.get_network(args.network, args.channels, args.dimensions).to(device)
logging.info('Loading Network...')
map_location = {"cuda:0": "cuda:{}".format(args.local_rank)}
checkpoint = torch.load(args.model_path, map_location=map_location)
network.load_state_dict(checkpoint)
network.eval()
# define event-handlers for engine
_, val_loader = train.get_loaders(args, pre_transforms, train=False)
fold_size = int(len(val_loader.dataset) / args.batch / args.folds) if args.folds else 0
logging.info('Using Fold-Size: {}'.format(fold_size))
val_handlers = [
StatsHandler(output_transform=lambda x: None),
TensorBoardStatsHandler(log_dir=args.output, output_transform=lambda x: None),
]
post_transform_list = [
EnsureTyped(keys='pred'),
Activationsd(keys='pred', sigmoid=True),
AsDiscreted(keys='pred', threshold=0.5)
]
if args.save_seg:
post_transform_list.append(
SaveImaged(keys="pred", meta_keys="image_meta_dict", output_dir=os.path.join(args.output, f'clicks_{click}_images'))
)
post_transform = Compose(post_transform_list)
evaluator = SupervisedEvaluator(
device=device,
val_data_loader=val_loader,
network=network,
iteration_update=Interaction(
transforms=click_transforms,
max_interactions=click,
train=False),
inferer=SimpleInferer(),
postprocessing=post_transform,
val_handlers=val_handlers,
key_val_metric={
f'clicks_{click}_val_dice': MeanDice(
include_background=False,
output_transform=from_engine(["pred", "label"]),
)
}
)
return evaluator
def run(args):
args.roi_size = json.loads(args.roi_size)
args.model_size = json.loads(args.model_size)
if args.local_rank == 0:
for arg in vars(args):
logging.info('USING:: {} = {}'.format(arg, getattr(args, arg)))
print("")
if not os.path.exists(args.output):
logging.info('output path [{}] does not exist. creating it now.'.format(args.output))
os.makedirs(args.output, exist_ok=True)
clicks = json.loads(args.max_val_interactions)
for click in clicks:
logging.info('+++++++++++++++++++++++++++++++++++++++++++++++++++++')
logging.info(' CLICKS = {}'.format(click))
logging.info('+++++++++++++++++++++++++++++++++++++++++++++++++++++')
evaluator = create_validator(args, click)
start_time = time.time()
evaluator.run()
end_time = time.time()
logging.info('Total Run Time {}'.format(end_time - start_time))
def strtobool(val):
return bool(distutils.util.strtobool(val))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--seed', type=int, default=23)
parser.add_argument('--dimensions', type=int, default=2)
parser.add_argument('-n', '--network', default='bunet', choices=['unet', 'bunet'])
parser.add_argument('-c', '--channels', type=int, default=32)
parser.add_argument('-f', '--folds', type=int, default=10)
parser.add_argument('-i', '--input', default='/workspace/data/deepgrow/2D/MSD_Task09_Spleen/dataset.json')
parser.add_argument('-o', '--output', default='eval')
parser.add_argument('--save_seg', type=strtobool, default='false')
parser.add_argument('--cache_dir', type=str, default=None)
parser.add_argument('-g', '--use_gpu', type=strtobool, default='true')
parser.add_argument('-b', '--batch', type=int, default=1)
parser.add_argument('-t', '--limit', type=int, default=20)
parser.add_argument('-m', '--model_path', default="output/model.pt")
parser.add_argument('--roi_size', default="[256, 256]")
parser.add_argument('--model_size', default="[256, 256]")
parser.add_argument('-iv', '--max_val_interactions', default="[0,1,2,5,10,15]")
parser.add_argument('--multi_gpu', type=strtobool, default='false')
parser.add_argument("--local_rank", type=int, default=0)
args = parser.parse_args()
run(args)
if __name__ == "__main__":
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format='[%(asctime)s.%(msecs)03d][%(levelname)5s] - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
main()