@@ -105,7 +105,7 @@ Q=(xQ, yQ)
105
105
<!-- $m = \frac{y_P - y_Q}{x_P - x_Q}$ -->
106
106
<img src =" https://render.githubusercontent.com/render/math?math=m = \frac{y_P - y_Q}{x_P - x_Q} " />
107
107
108
- 联立直线和椭圆方程,则 R 的坐标可以如下计算 (?? xR 的公式推导还没有想明白 ??)
108
+ R 的坐标可以如下计算
109
109
110
110
<!-- $x_R= m^2 - x_P - x_Q$ -->
111
111
<img src =" https://render.githubusercontent.com/render/math?math=x_R= m^2 - x_P - x_Q " />
@@ -118,6 +118,40 @@ Q=(xQ, yQ)
118
118
<!-- $y_Q= y_P + m(x_R - x_Q)$ -->
119
119
<img src =" https://render.githubusercontent.com/render/math?math=y_R= y_Q %2B m(x_R - x_Q) " />
120
120
121
+ 推导过程如下(感谢 kaiji 的补充):
122
+
123
+ 代入 Q 点和 P 点到椭圆曲线
124
+
125
+ <!-- $y_Q^2=x_Q^3+ax_Q+b$ -->
126
+ <img src =" https://render.githubusercontent.com/render/math?math=y_Q^2=x_Q^3%2Bax_Q%2Bb " />
127
+
128
+ <!-- $y_R^2=x_R^3+ax_R+b$ -->
129
+ <img src =" https://render.githubusercontent.com/render/math?math=y_R^2=x_R^3%2Bax_R%2Bb " />
130
+
131
+ 将上述两个等式相减
132
+
133
+ <!-- $(y_Q+y_R)(y_Q-y_R)=(x_Q-x_R)(x_Q^2+x_Qx_R+x_R^2+a)$ -->
134
+ <img src =" https://render.githubusercontent.com/render/math?math=(y_Q%2By_R)(y_Q-y_R)=(x_Q-x_R)(x_Q^2%2Bx_Qx_R%2Bx_R^2%2Ba) " />
135
+
136
+ 将 yQ - yR 替换为 m(xQ-xR),等式两边消去 (yQ+yR)
137
+
138
+ <!-- $m(y_Q+y_R)=x_Q^2+x_Qx_R+x_R^2+a$ -->
139
+ <img src =" https://render.githubusercontent.com/render/math?math=m(y_Q%2By_R)=x_Q^2%2Bx_Qx_R%2Bx_R^2%2Ba " />
140
+
141
+ 同理可得
142
+
143
+ <!-- $m(y_P+y_R)=x_P^2+x_Px_R+x_R^2+a$ -->
144
+ <img src =" https://render.githubusercontent.com/render/math?math=m(y_P%2By_R)=x_P^2%2Bx_Px_R%2Bx_R^2%2Ba " />
145
+
146
+ 将上述两个等式相减
147
+
148
+ $m(y_P-y_Q)=(x_P+x_Q)(x_P-x_Q)+x_R(x_P-x_Q)$
149
+ <img src =" https://render.githubusercontent.com/render/math?math=m(y_P-y_Q)=(x_P%2Bx_Q)(x_P-x_Q)%2Bx_R(x_P-x_Q) " />
150
+
151
+ 两边同时除以 (xP-xQ)
152
+
153
+ $x_R=m^2-x_P-x_Q$
154
+
121
155
计算出 R 点之后,进而得出关于 x 轴对称点 -R,即为 P+Q 的结果
122
156
123
157
(xP,yP) + (xQ,yQ) = (xR,-yR)
0 commit comments