-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
93 lines (67 loc) · 3.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import argparse
import importlib.util as util
import torch
from iharm.utils.exp import init_experiment
import os
def parse_args():
'''
use parser to get command line parameters
'''
parser = argparse.ArgumentParser()
parser.add_argument('model_path', type=str,
help='the model\'s file')
parser.add_argument('--exp_name', type=str, default='',
help='Here you can specify the name of the experiment. '
'It will be added as a suffix to the experiment folder.')
parser.add_argument('--datasets', type=str, default='HDay2Night,HFlickr,HCOCO,HAdobe5k',
help='Each dataset name must be one of the prefixes in config paths, '
'which look like DATASET_PATH.')
parser.add_argument('--workers', type=int, default=10,
metavar='N', help='Dataloader threads.')
parser.add_argument('--batch_size', type=int, default=1,
help='The batch size while training')
parser.add_argument('--hr_h', type=int, default=1024, help='target h resolution')
parser.add_argument('--hr_w', type=int, default=1024, help='target w resolution')
parser.add_argument('--lr', type=int, default=256, help='target base resolution')
parser.add_argument('--is_sim', action='store_true', default=False,
help='Whether use CDTNet-sim.')
parser.add_argument('--ngpus', type=int, default=1,
help='Number of GPUs. '
'If you only specify "--gpus" argument, the ngpus value will be calculated automatically. '
'You should use either this argument or "--gpus".')
parser.add_argument('--gpus', type=str, default='', required=False,
help='Ids of used GPUs. You should use either this argument or "--ngpus".')
parser.add_argument('--resume-exp', type=str, default=None,
help='The prefix of the name of the experiment to be continued. '
'If you use this field, you must specify the "--resume-prefix" argument.')
parser.add_argument('--resume-prefix', type=str, default='latest',
help='The prefix of the name of the checkpoint to be loaded.')
parser.add_argument('--start_epoch', type=int, default=0,
help='The number of the starting epoch from which training will continue. '
'(it is important for correct logging and learning rate)')
parser.add_argument('--weights', type=str, default=None,
help='Model weights will be loaded from the specified path if you use this argument.')
parser.add_argument('--finetune_base', action='store_true',
help='Whether finetune the base model')
parser.add_argument('--n_lut', type=int, default=4)
return parser.parse_args()
def find_module_name(model_path):
'''
According to the parameters, find the location of the script
'''
location = util.spec_from_file_location("model_script", model_path)
model_name = util.module_from_spec(location)
location.loader.exec_module(model_name)
return model_name
if __name__ == '__main__':
#set some flags
#os.environ["CUDA_VISIBLE_DEVICES"] = '2'
#torch.cuda.set_device(1)
torch.backends.cudnn.benchmark = True
torch.multiprocessing.set_sharing_strategy('file_system')
#get all configurations from command line and file
args = parse_args()
model_name = find_module_name(args.model_path)
cfg = init_experiment(args)
#start training!
model_name.train(cfg)