-
Notifications
You must be signed in to change notification settings - Fork 430
/
Copy pathtest_llmobs_evaluator_runner.py
258 lines (203 loc) · 9.69 KB
/
test_llmobs_evaluator_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import json
import os
import time
import mock
import pytest
from ddtrace._trace.span import Span
from ddtrace.llmobs._evaluators.runner import EvaluatorRunner
from ddtrace.llmobs._evaluators.sampler import EvaluatorRunnerSampler
from ddtrace.llmobs._evaluators.sampler import EvaluatorRunnerSamplingRule
from tests.llmobs._utils import DummyEvaluator
from tests.llmobs._utils import _dummy_evaluator_eval_metric_event
from tests.utils import override_env
from tests.utils import override_global_config
DUMMY_SPAN = Span("dummy_span")
@pytest.fixture
def active_evaluator_runner(LLMObs):
evaluator_runner = EvaluatorRunner(interval=0.01, llmobs_service=LLMObs)
evaluator_runner.evaluators.append(DummyEvaluator(llmobs_service=LLMObs))
evaluator_runner.start()
yield evaluator_runner
def test_evaluator_runner_start(mock_evaluator_logs, active_evaluator_runner):
mock_evaluator_logs.debug.assert_has_calls([mock.call("started %r", "EvaluatorRunner")])
def test_evaluator_runner_buffer_limit(mock_evaluator_logs, active_evaluator_runner):
for _ in range(1001):
active_evaluator_runner.enqueue({}, DUMMY_SPAN)
mock_evaluator_logs.warning.assert_called_with(
"%r event buffer full (limit is %d), dropping event", "EvaluatorRunner", 1000
)
def test_evaluator_runner_periodic_enqueues_eval_metric(mock_llmobs_eval_metric_writer, active_evaluator_runner):
active_evaluator_runner.enqueue({"span_id": "123", "trace_id": "1234"}, DUMMY_SPAN)
active_evaluator_runner.periodic()
mock_llmobs_eval_metric_writer.enqueue.assert_called_once_with(
_dummy_evaluator_eval_metric_event(span_id="123", trace_id="1234")
)
def test_evaluator_runner_stopped_does_not_enqueue_metric(LLMObs, mock_llmobs_eval_metric_writer):
evaluator_runner = EvaluatorRunner(interval=0.1, llmobs_service=LLMObs)
evaluator_runner.start()
evaluator_runner.enqueue({"span_id": "123", "trace_id": "1234"}, DUMMY_SPAN)
assert not evaluator_runner._buffer
assert mock_llmobs_eval_metric_writer.enqueue.call_count == 0
def test_evaluator_runner_timed_enqueues_eval_metric(LLMObs, mock_llmobs_eval_metric_writer, active_evaluator_runner):
active_evaluator_runner.enqueue({"span_id": "123", "trace_id": "1234"}, DUMMY_SPAN)
time.sleep(0.1)
mock_llmobs_eval_metric_writer.enqueue.assert_called_once_with(
_dummy_evaluator_eval_metric_event(span_id="123", trace_id="1234")
)
def test_evaluator_runner_on_exit(mock_writer_logs, run_python_code_in_subprocess):
env = os.environ.copy()
pypath = [os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))]
if "PYTHONPATH" in env:
pypath.append(env["PYTHONPATH"])
env.update(
{
"DD_API_KEY": os.getenv("DD_API_KEY", "dummy-api-key"),
"DD_SITE": "datad0g.com",
"PYTHONPATH": ":".join(pypath),
"DD_LLMOBS_ML_APP": "unnamed-ml-app",
"_DD_LLMOBS_EVALUATOR_INTERVAL": "5",
}
)
out, err, status, pid = run_python_code_in_subprocess(
"""
import os
import time
import atexit
import mock
from ddtrace.llmobs import LLMObs
from ddtrace.llmobs._evaluators.runner import EvaluatorRunner
from tests.llmobs._utils import logs_vcr
from tests.llmobs._utils import DummyEvaluator
ctx = logs_vcr.use_cassette("tests.llmobs.test_llmobs_evaluator_runner.send_score_metric.yaml")
ctx.__enter__()
atexit.register(lambda: ctx.__exit__())
LLMObs.enable()
LLMObs._instance._evaluator_runner.evaluators.append(DummyEvaluator(llmobs_service=LLMObs))
LLMObs._instance._evaluator_runner.start()
LLMObs._instance._evaluator_runner.enqueue({"span_id": "123", "trace_id": "1234"}, None)
""",
env=env,
)
assert status == 0, err
assert out == b""
assert err == b""
def test_evaluator_runner_sampler_single_rule(monkeypatch):
monkeypatch.setenv(
EvaluatorRunnerSampler.SAMPLING_RULES_ENV_VAR,
json.dumps([{"sample_rate": 0.5, "evaluator_label": "ragas_faithfulness", "span_name": "dummy_span"}]),
)
sampling_rules = EvaluatorRunnerSampler().rules
assert len(sampling_rules) == 1
assert sampling_rules[0].sample_rate == 0.5
assert sampling_rules[0].evaluator_label == "ragas_faithfulness"
assert sampling_rules[0].span_name == "dummy_span"
def test_evaluator_runner_sampler_multiple_rules(monkeypatch):
monkeypatch.setenv(
EvaluatorRunnerSampler.SAMPLING_RULES_ENV_VAR,
json.dumps(
[
{"sample_rate": 0.5, "evaluator_label": "ragas_faithfulness", "span_name": "dummy_span"},
{"sample_rate": 0.2, "evaluator_label": "ragas_faithfulness", "span_name": "dummy_span_2"},
]
),
)
sampling_rules = EvaluatorRunnerSampler().rules
assert len(sampling_rules) == 2
assert sampling_rules[0].sample_rate == 0.5
assert sampling_rules[0].evaluator_label == "ragas_faithfulness"
assert sampling_rules[0].span_name == "dummy_span"
assert sampling_rules[1].sample_rate == 0.2
assert sampling_rules[1].evaluator_label == "ragas_faithfulness"
assert sampling_rules[1].span_name == "dummy_span_2"
def test_evaluator_runner_sampler_no_rule_label_or_name(monkeypatch):
monkeypatch.setenv(
EvaluatorRunnerSampler.SAMPLING_RULES_ENV_VAR,
json.dumps([{"sample_rate": 0.5}]),
)
sampling_rules = EvaluatorRunnerSampler().rules
assert len(sampling_rules) == 1
assert sampling_rules[0].sample_rate == 0.5
assert sampling_rules[0].evaluator_label == EvaluatorRunnerSamplingRule.NO_RULE
assert sampling_rules[0].span_name == EvaluatorRunnerSamplingRule.NO_RULE
def test_evaluator_sampler_invalid_json(monkeypatch, mock_evaluator_sampler_logs):
monkeypatch.setenv(
EvaluatorRunnerSampler.SAMPLING_RULES_ENV_VAR,
"not a json",
)
with override_global_config({"_raise": True}):
with pytest.raises(ValueError):
EvaluatorRunnerSampler().rules
with override_global_config({"_raise": False}):
sampling_rules = EvaluatorRunnerSampler().rules
assert len(sampling_rules) == 0
mock_evaluator_sampler_logs.warning.assert_called_once_with(
"Failed to parse evaluator sampling rules of: `not a json`", exc_info=True
)
def test_evaluator_sampler_invalid_rule_not_a_list(monkeypatch, mock_evaluator_sampler_logs):
monkeypatch.setenv(
EvaluatorRunnerSampler.SAMPLING_RULES_ENV_VAR,
json.dumps({"sample_rate": 0.5, "evaluator_label": "ragas_faithfulness", "span_name": "dummy_span"}),
)
with override_global_config({"_raise": True}):
with pytest.raises(ValueError):
EvaluatorRunnerSampler().rules
with override_global_config({"_raise": False}):
sampling_rules = EvaluatorRunnerSampler().rules
assert len(sampling_rules) == 0
mock_evaluator_sampler_logs.warning.assert_called_once_with(
"Evaluator sampling rules must be a list of dictionaries", exc_info=True
)
def test_evaluator_sampler_invalid_rule_missing_sample_rate(monkeypatch, mock_evaluator_sampler_logs):
monkeypatch.setenv(
EvaluatorRunnerSampler.SAMPLING_RULES_ENV_VAR,
json.dumps([{"sample_rate": 0.1, "span_name": "dummy"}, {"span_name": "dummy2"}]),
)
with override_global_config({"_raise": True}):
with pytest.raises(KeyError):
EvaluatorRunnerSampler().rules
with override_global_config({"_raise": False}):
sampling_rules = EvaluatorRunnerSampler().rules
assert len(sampling_rules) == 1
mock_evaluator_sampler_logs.warning.assert_called_once_with(
'No sample_rate provided for sampling rule: {"span_name": "dummy2"}', exc_info=True
)
def test_evaluator_runner_sampler_no_rules_samples_all(monkeypatch):
iterations = int(1e4)
sampled = sum(EvaluatorRunnerSampler().sample("ragas_faithfulness", Span(name=str(i))) for i in range(iterations))
deviation = abs(sampled - (iterations)) / (iterations)
assert deviation < 0.05
def test_evaluator_sampling_rule_matches(monkeypatch):
sample_rate = 0.5
span_name_rule = "dummy_span"
evaluator_label_rule = "ragas_faithfulness"
for rule in [
{"evaluator_label": evaluator_label_rule},
{"evaluator_label": evaluator_label_rule, "span_name": span_name_rule},
{"span_name": span_name_rule},
]:
rule["sample_rate"] = sample_rate
with override_env({EvaluatorRunnerSampler.SAMPLING_RULES_ENV_VAR: json.dumps([rule])}):
iterations = int(1e4 / sample_rate)
sampled = sum(
EvaluatorRunnerSampler().sample(evaluator_label_rule, Span(name=span_name_rule))
for i in range(iterations)
)
deviation = abs(sampled - (iterations * sample_rate)) / (iterations * sample_rate)
assert deviation < 0.05
def test_evaluator_sampling_does_not_match_samples_all(monkeypatch):
sample_rate = 0.5
span_name_rule = "dummy_span"
evaluator_label_rule = "ragas_faithfulness"
for rule in [
{"evaluator_label": evaluator_label_rule},
{"evaluator_label": evaluator_label_rule, "span_name": span_name_rule},
{"span_name": span_name_rule},
]:
rule["sample_rate"] = sample_rate
with override_env({EvaluatorRunnerSampler.SAMPLING_RULES_ENV_VAR: json.dumps([rule])}):
iterations = int(1e4 / sample_rate)
label_and_span = "not a matching label", Span(name="not matching span name")
assert EvaluatorRunnerSampler().rules[0].matches(*label_and_span) is False
sampled = sum(EvaluatorRunnerSampler().sample(*label_and_span) for i in range(iterations))
deviation = abs(sampled - (iterations)) / (iterations)
assert deviation < 0.05