You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
set (l' := ε (_mk_list_pred r)). unfold _mk_list_pred. auto.
1698
1698
Qed.
1699
1699
1700
-
RequireImport ExtensionalityFacts.
1700
+
RequireImportCoq.Logic.ExtensionalityFacts.
1701
1701
1702
1702
Lemma ISO_def {A B : Type'} : (@is_inverse A B) = (fun _17569 : A -> B => fun _17570 : B -> A => (forall x : B, (_17569 (_17570 x)) = x) /\ (forall y : A, (_17570 (_17569 y)) = y)).
1703
1703
Proof.
1704
1704
apply fun_ext; intro f. apply fun_ext; intro g.
1705
1705
unfold is_inverse. apply prop_ext; tauto.
1706
1706
Qed.
1707
1707
1708
-
RequireImport List.
1708
+
RequireImportCoq.Lists.List.
1709
1709
1710
1710
Lemma APPEND_def {A : Type'} : (@app A) = (@ε ((prod N (prod N (prod N (prod N (prod N N))))) -> (list' A) -> (list' A) -> list' A) (fun APPEND' : (prod N (prod N (prod N (prod N (prod N N))))) -> (list A) -> (list A) -> list A => forall _17935 : prod N (prod N (prod N (prod N (prod N N)))), (forall l : list A, (APPEND' _17935 (@nil A) l) = l) /\ (forall h : A, forall t : list A, forall l : list A, (APPEND' _17935 (@cons A h t) l) = (@cons A h (APPEND' _17935 t l)))) (@pair N (prod N (prod N (prod N (prod N N)))) (NUMERAL (BIT1 (BIT0 (BIT0 (BIT0 (BIT0 (BIT0 (BIT1 0)))))))) (@pair N (prod N (prod N (prod N N))) (NUMERAL (BIT0 (BIT0 (BIT0 (BIT0 (BIT1 (BIT0 (BIT1 0)))))))) (@pair N (prod N (prod N N)) (NUMERAL (BIT0 (BIT0 (BIT0 (BIT0 (BIT1 (BIT0 (BIT1 0)))))))) (@pair N (prod N N) (NUMERAL (BIT1 (BIT0 (BIT1 (BIT0 (BIT0 (BIT0 (BIT1 0)))))))) (@pair N N (NUMERAL (BIT0 (BIT1 (BIT1 (BIT1 (BIT0 (BIT0 (BIT1 0)))))))) (NUMERAL (BIT0 (BIT0 (BIT1 (BIT0 (BIT0 (BIT0 (BIT1 0)))))))))))))).
1711
1711
Proof.
@@ -2268,7 +2268,7 @@ Add Relation _ nadd_eq
2268
2268
transitivity proved by nadd_eq_trans
2269
2269
as nadd_eq_rel.
2270
2270
2271
-
RequireImportSetoid.
2271
+
RequireImportCoq.Setoids.Setoid.
2272
2272
2273
2273
AddMorphism nadd_add
2274
2274
with signature nadd_eq ==> nadd_eq ==> nadd_eq
@@ -2287,7 +2287,7 @@ Proof.
2287
2287
intros f f' [b ff'] g g' [c gg'].
2288
2288
Abort.*)
2289
2289
2290
-
RequireImport ProofIrrelevance.
2290
+
RequireImportCoq.Logic.ProofIrrelevance.
2291
2291
2292
2292
Lemma nadd_add_lcancel x y z : nadd_add x y = nadd_add x z -> y = z.
0 commit comments