Skip to content

Commit a1d252b

Browse files
authored
Qualify Coq modules (#2)
1 parent f298390 commit a1d252b

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

mappings.v

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -75,7 +75,7 @@ Axiom fun_ext : forall {A B : Type} {f g : A -> B}, (forall x, (f x) = (g x)) ->
7575

7676
Axiom prop_ext : forall {P Q : Prop}, (P -> Q) -> (Q -> P) -> P = Q.
7777

78-
Require Import ClassicalFacts.
78+
Require Import Coq.Logic.ClassicalFacts.
7979

8080
Lemma prop_degen : forall P, P = True \/ P = False.
8181
Proof.
@@ -84,7 +84,7 @@ Proof.
8484
intro P. apply classic.
8585
Qed.
8686

87-
Require Import PropExtensionalityFacts.
87+
Require Import Coq.Logic.PropExtensionalityFacts.
8888

8989
Lemma is_True P : (P = True) = P.
9090
Proof.
@@ -189,7 +189,7 @@ Qed.
189189
(* Alignment of subtypes. *)
190190
(*****************************************************************************)
191191

192-
Require Import ProofIrrelevance.
192+
Require Import Coq.Logic.ProofIrrelevance.
193193

194194
Section Subtype.
195195

@@ -622,7 +622,7 @@ Qed.
622622
(* Alignment of the type of natural numbers. *)
623623
(****************************************************************************)
624624

625-
Require Import BinNat Lia.
625+
Require Import Coq.NArith.BinNat Coq.micromega.Lia.
626626

627627
Open Scope N_scope.
628628

@@ -1697,15 +1697,15 @@ Proof.
16971697
set (l' := ε (_mk_list_pred r)). unfold _mk_list_pred. auto.
16981698
Qed.
16991699

1700-
Require Import ExtensionalityFacts.
1700+
Require Import Coq.Logic.ExtensionalityFacts.
17011701

17021702
Lemma ISO_def {A B : Type'} : (@is_inverse A B) = (fun _17569 : A -> B => fun _17570 : B -> A => (forall x : B, (_17569 (_17570 x)) = x) /\ (forall y : A, (_17570 (_17569 y)) = y)).
17031703
Proof.
17041704
apply fun_ext; intro f. apply fun_ext; intro g.
17051705
unfold is_inverse. apply prop_ext; tauto.
17061706
Qed.
17071707

1708-
Require Import List.
1708+
Require Import Coq.Lists.List.
17091709

17101710
Lemma APPEND_def {A : Type'} : (@app A) = (@ε ((prod N (prod N (prod N (prod N (prod N N))))) -> (list' A) -> (list' A) -> list' A) (fun APPEND' : (prod N (prod N (prod N (prod N (prod N N))))) -> (list A) -> (list A) -> list A => forall _17935 : prod N (prod N (prod N (prod N (prod N N)))), (forall l : list A, (APPEND' _17935 (@nil A) l) = l) /\ (forall h : A, forall t : list A, forall l : list A, (APPEND' _17935 (@cons A h t) l) = (@cons A h (APPEND' _17935 t l)))) (@pair N (prod N (prod N (prod N (prod N N)))) (NUMERAL (BIT1 (BIT0 (BIT0 (BIT0 (BIT0 (BIT0 (BIT1 0)))))))) (@pair N (prod N (prod N (prod N N))) (NUMERAL (BIT0 (BIT0 (BIT0 (BIT0 (BIT1 (BIT0 (BIT1 0)))))))) (@pair N (prod N (prod N N)) (NUMERAL (BIT0 (BIT0 (BIT0 (BIT0 (BIT1 (BIT0 (BIT1 0)))))))) (@pair N (prod N N) (NUMERAL (BIT1 (BIT0 (BIT1 (BIT0 (BIT0 (BIT0 (BIT1 0)))))))) (@pair N N (NUMERAL (BIT0 (BIT1 (BIT1 (BIT1 (BIT0 (BIT0 (BIT1 0)))))))) (NUMERAL (BIT0 (BIT0 (BIT1 (BIT0 (BIT0 (BIT0 (BIT1 0)))))))))))))).
17111711
Proof.
@@ -2268,7 +2268,7 @@ Add Relation _ nadd_eq
22682268
transitivity proved by nadd_eq_trans
22692269
as nadd_eq_rel.
22702270

2271-
Require Import Setoid.
2271+
Require Import Coq.Setoids.Setoid.
22722272

22732273
Add Morphism nadd_add
22742274
with signature nadd_eq ==> nadd_eq ==> nadd_eq
@@ -2287,7 +2287,7 @@ Proof.
22872287
intros f f' [b ff'] g g' [c gg'].
22882288
Abort.*)
22892289

2290-
Require Import ProofIrrelevance.
2290+
Require Import Coq.Logic.ProofIrrelevance.
22912291

22922292
Lemma nadd_add_lcancel x y z : nadd_add x y = nadd_add x z -> y = z.
22932293
Proof.

0 commit comments

Comments
 (0)