-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathComp.lp
75 lines (51 loc) · 1.35 KB
/
Comp.lp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/* Comparison datatype
By Quentin Garchery (May 2021). */
require open Stdlib.Set Stdlib.Prop Stdlib.FOL Stdlib.Eq
Stdlib.Bool;
inductive Comp : TYPE ≔
| Eq : Comp
| Lt : Comp
| Gt : Comp;
// set code for Comp
constant symbol comp : Set;
rule τ comp ↪ Comp;
// Boolean functions for testing head constructor
symbol isEq : Comp → 𝔹;
rule isEq Eq ↪ true
with isEq Lt ↪ false
with isEq Gt ↪ false;
symbol isLt : Comp → 𝔹;
rule isLt Eq ↪ false
with isLt Lt ↪ true
with isLt Gt ↪ false;
symbol isGt : Comp → 𝔹;
rule isGt Eq ↪ false
with isGt Lt ↪ false
with isGt Gt ↪ true;
// Discriminate constructors
symbol Lt≠Eq : π (Lt ≠ Eq) ≔
begin
assume h; refine ind_eq h (λ n, istrue(isEq n)) ⊤ᵢ
end;
symbol Gt≠Eq : π (Gt ≠ Eq) ≔
begin
assume h; refine ind_eq h (λ n, istrue(isEq n)) ⊤ᵢ
end;
symbol Gt≠Lt : π (Gt ≠ Lt) ≔
begin
assume h; refine ind_eq h (λ n, istrue(isLt n)) ⊤ᵢ
end;
// Opposite of a Comp
symbol opp : Comp → Comp;
rule opp Eq ↪ Eq
with opp Lt ↪ Gt
with opp Gt ↪ Lt;
symbol opp_idem c : π (opp (opp c) = c) ≔
begin
induction { reflexivity; } { reflexivity; } { reflexivity; }
end;
// Conditional
symbol case_Comp [A] : Comp → τ A → τ A → τ A → τ A;
rule case_Comp Eq $x _ _ ↪ $x
with case_Comp Lt _ $x _ ↪ $x
with case_Comp Gt _ _ $x ↪ $x;