Skip to content

Commit 02c810e

Browse files
committed
Updated for ICLR25
1 parent c185806 commit 02c810e

File tree

3 files changed

+18
-20
lines changed

3 files changed

+18
-20
lines changed

README.md

+18-20
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
<div align="center">
22

3-
# GraphAny: A Foundation Model for Node Classification on Any Graph #
3+
# GraphAny: Fully-inductive Node Classification on Arbitrary Graphs #
44

55
[![pytorch](https://img.shields.io/badge/PyTorch_2.1+-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/get-started/locally/)
66
[![lightning](https://img.shields.io/badge/-Lightning_2.2+-792ee5?logo=pytorchlightning&logoColor=white)](https://pytorchlightning.ai/)
@@ -13,28 +13,28 @@
1313

1414
Original PyTorch implementation of [GraphAny].
1515

16-
Authored by [Jianan Zhao], [Hesham Mostafa], [Mikhail Galkin], [Michael Bronstein],
17-
[Zhaocheng Zhu], and [Jian Tang].
16+
Authored by [Jianan Zhao], [Zhaocheng Zhu], [Mikhail Galkin], [Hesham Mostafa], [Michael Bronstein],
17+
and [Jian Tang].
1818

1919
[Jianan Zhao]: https://andyjzhao.github.io/
20-
[Hesham Mostafa]: https://www.linkedin.com/in/hesham-mostafa-79ba93237
2120
[Zhaocheng Zhu]: https://kiddozhu.github.io
2221
[Mikhail Galkin]: https://migalkin.github.io/
22+
[Hesham Mostafa]: https://www.linkedin.com/in/hesham-mostafa-79ba93237
2323
[Michael Bronstein]: https://www.cs.ox.ac.uk/people/michael.bronstein/
2424
[Jian Tang]: https://jian-tang.com/
25-
[GraphAny]: http://arxiv.org/abs/2405.20445
25+
[GraphAny]: https://openreview.net/pdf?id=1Qpt43cqhg
2626

2727
## Overview ##
2828

29-
![Foundation Model on Node Classification](assets/fm_on_node_classification.png)
29+
![Fully-Inductive Model on Node Classification](assets/fully_ind_node_cla.png)
3030

31-
GraphAny is a foundation model for node classification. A single pre-trained GraphAny
31+
GraphAny is a fully-inductive model for node classification. A single trained GraphAny
3232
model performs node classification tasks on any graph with any feature and label
33-
spaces. Performance-wise, averaged on 30+ graphs, a single pre-trained GraphAny model
34-
is better **_in inference mode_** than many supervised models (e.g., MLP, GCN, GAT)
33+
spaces. Performance-wise, averaged on 30+ graphs, a single trained GraphAny model **_in inference mode_**
34+
is better than many transductive (supervised) models (e.g., MLP, GCN, and GAT)
3535
trained specifically for each graph. Following the pretrain-inference paradigm of
3636
foundation models, you can perform training from scratch and inference on 30 datasets
37-
as shown in [Training from scratch](#training-foundation-models-from-scratch).
37+
as shown in [Training from scratch](#training-from-scratch).
3838

3939
This repository is based on PyTorch 2.1, Pytorch-Lightning 2.2, PyG 2.4, DGL 2.1, and Hydra 1.3.
4040

@@ -74,7 +74,7 @@ conda env create -f environment_cpu.yaml
7474

7575
## Reproduce Our Results ##
7676

77-
### Training Foundation Models from Scratch ###
77+
### Training GraphAny from Scratch ###
7878

7979
This section would detail how users can train GraphAny on one dataset (Cora,
8080
Wisconsin, Arxiv, or Product) and evaluate on all 31 datasets. You can reproduce
@@ -111,12 +111,12 @@ _dataset_lookup:
111111
eval: [ Cora, Citeseer ]
112112
```
113113
114-
**Step 2** _(optional)_: Define your dataset processing logic in graph_any/data.py. Please go through the [Bring Your Own Dataset](#bring-your-own-dataset) section.
114+
**Step 2** _(optional)_: Define your dataset processing logic in graph_any/data.py.
115115
This step is necessary only if you are not using our pre-processed data. If you
116116
choose to use our provided datasets, you can skip this step and proceed directly to
117117
Step 3.
118118
119-
**Step 3**: Run inference with pre-trained model using command:
119+
**Step 3**: Inference using pre-trained model using command:
120120
121121
```bash
122122
python graphany/run.py prev_ckpt=checkpoints/graph_any_arxiv.pt total_steps=0 dataset=CoraCiteInference
@@ -378,12 +378,10 @@ This setup will allow you to track and visualize metrics dynamically.
378378
If you find this codebase useful in your research, please cite the paper.
379379

380380
```bibtex
381-
@article{zhao2024graphany,
382-
title={GraphAny: A Foundation Model for Node Classification on Any Graph},
383-
author={Jianan Zhao and Hesham Mostafa and Mikhail Galkin and Michael Bronstein and Zhaocheng Zhu and Jian Tang},
384-
year={2024},
385-
eprint={2405.20445},
386-
archivePrefix={arXiv},
387-
primaryClass={cs.LG}
381+
@article{zhao2025graphany,
382+
title = {Fully-inductive Node Classification on Arbitrary Graphs},
383+
author = {Jianan Zhao and Zhaocheng Zhu and Mikhail Galkin and Hesham Mostafa and Michael Bronstein and Jian Tang},
384+
journal = {International Conference on Learning Representations},
385+
year = {2025}
388386
}
389387
```

assets/fm_on_node_classification.png

-130 KB
Binary file not shown.

assets/fully_ind_node_cla.png

116 KB
Loading

0 commit comments

Comments
 (0)