|
| 1 | +# Author: Nguyen Truong Thinh |
| 2 | +# Contact me: [email protected] || +84393280504 |
| 3 | +# |
| 4 | +# Package & libraries for scientific computing section |
| 5 | +from matplotlib import pyplot as plt |
| 6 | + |
| 7 | +import numpy as np |
| 8 | + |
| 9 | +# Mathematical functions |
| 10 | +print(np.log(32)) |
| 11 | +print(np.exp(3)) |
| 12 | +print(np.sin(2)) |
| 13 | +print(np.cos(2)) |
| 14 | + |
| 15 | +# Numpy arrays: Single dimensional |
| 16 | +my_arr = np.array([0, 1, 3, 4, 5]) |
| 17 | +print(my_arr) |
| 18 | + |
| 19 | +my_arr = np.array(range(0, 10)) |
| 20 | +print(my_arr) |
| 21 | + |
| 22 | +my_arr = np.linspace(1.1, 4.8, num=6) |
| 23 | +print(my_arr) |
| 24 | +print("\nmy array type is: ", type(my_arr)) |
| 25 | +print("\nThe first element is: ", my_arr[0]) |
| 26 | + |
| 27 | +my_arr[0] = 1.0 |
| 28 | +print("\nThe first element is now: ", my_arr[0]) |
| 29 | + |
| 30 | +my_arr[0:4] = 99 |
| 31 | +print('\nThe my array is now:', my_arr) |
| 32 | +print('\nThe max of my array is: ', my_arr.max()) |
| 33 | +print('\nThe min of my array is: ', my_arr.min()) |
| 34 | +print('The mean of my array is: ', my_arr.mean()) |
| 35 | +# Numpy arrays: Multi-dimensional |
| 36 | +_2d_matrix = np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) |
| 37 | +print(_2d_matrix) |
| 38 | +print('\nThe matrix dimensions are: ', _2d_matrix.shape) |
| 39 | +print('\nElement in first row, third column is: ', _2d_matrix[0, 2]) |
| 40 | +print('\nElement in second row, fifth column is: ', _2d_matrix[1, 4]) |
| 41 | + |
| 42 | +rs_2d_matrix = _2d_matrix.reshape(5, 2) |
| 43 | +print('\nReshaped matrix is: \n', rs_2d_matrix) |
| 44 | +trans_2d_matrix = _2d_matrix.transpose() |
| 45 | +print('\nTransposed matrix is: \n', trans_2d_matrix) |
| 46 | +into_lines = _2d_matrix.ravel() |
| 47 | +print('\nUnraveled matrix is: \n', into_lines) |
| 48 | + |
| 49 | +array_zeros = np.zeros((3, 5)) |
| 50 | +print('\n', array_zeros) |
| 51 | +array_ones = np.ones((8, 9)) |
| 52 | +print('\n', array_ones) |
| 53 | +array_pi = np.full((3, 7), 3.14159) |
| 54 | +print('\n', array_pi) |
| 55 | + |
| 56 | +_3d_matrix = np.ones((3, 5, 3)) |
| 57 | +print('\n 3D matrix: \n', _3d_matrix) |
| 58 | + |
| 59 | +array_ones[2:6, 2:] = 8.95 |
| 60 | +print('My large matrix of ones is now: \n', array_ones) |
| 61 | + |
| 62 | +arr_1 = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) |
| 63 | +arr_2 = np.array([[3, 6, 9], [12, 9, 15], [6, 36, 63]]) |
| 64 | +print('Array 1:\n', arr_1) |
| 65 | +print('Array 2: \n', arr_2) |
| 66 | +array_3 = arr_2 + np.sin(arr_1) - arr_1 / arr_2 |
| 67 | +print('\nArray 3:\n', array_3) |
| 68 | + |
| 69 | +other_array = np.array([1, 2, 3, 4, 5]) |
| 70 | +for i in other_array: |
| 71 | + print(i**3 + i) |
| 72 | + |
| 73 | +x = np.array(range(0, 9)) |
| 74 | +y = np.sqrt(x) |
| 75 | +plt.plot(x, y) |
| 76 | +print('\nMy an other array y has values: ', y) |
| 77 | + |
0 commit comments