|
| 1 | +""" |
| 2 | +https://en.wikipedia.org/wiki/Self-organizing_map |
| 3 | +""" |
| 4 | +import math |
| 5 | + |
| 6 | + |
| 7 | +class SelfOrganizingMap: |
| 8 | + def get_winner(self, weights: list[list[float]], sample: list[int]) -> int: |
| 9 | + """ |
| 10 | + Compute the winning vector by Euclidean distance |
| 11 | +
|
| 12 | + >>> SelfOrganizingMap().get_winner([[1, 2, 3], [4, 5, 6]], [1, 2, 3]) |
| 13 | + 1 |
| 14 | + """ |
| 15 | + d0 = 0.0 |
| 16 | + d1 = 0.0 |
| 17 | + for i in range(len(sample)): |
| 18 | + d0 += math.pow((sample[i] - weights[0][i]), 2) |
| 19 | + d1 += math.pow((sample[i] - weights[1][i]), 2) |
| 20 | + return 0 if d0 > d1 else 1 |
| 21 | + return 0 |
| 22 | + |
| 23 | + def update( |
| 24 | + self, weights: list[list[int | float]], sample: list[int], j: int, alpha: float |
| 25 | + ) -> list[list[int | float]]: |
| 26 | + """ |
| 27 | + Update the winning vector. |
| 28 | +
|
| 29 | + >>> SelfOrganizingMap().update([[1, 2, 3], [4, 5, 6]], [1, 2, 3], 1, 0.1) |
| 30 | + [[1, 2, 3], [3.7, 4.7, 6]] |
| 31 | + """ |
| 32 | + for i in range(len(weights)): |
| 33 | + weights[j][i] += alpha * (sample[i] - weights[j][i]) |
| 34 | + return weights |
| 35 | + |
| 36 | + |
| 37 | +# Driver code |
| 38 | +def main() -> None: |
| 39 | + # Training Examples ( m, n ) |
| 40 | + training_samples = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] |
| 41 | + |
| 42 | + # weight initialization ( n, C ) |
| 43 | + weights = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] |
| 44 | + |
| 45 | + # training |
| 46 | + self_organizing_map = SelfOrganizingMap() |
| 47 | + epochs = 3 |
| 48 | + alpha = 0.5 |
| 49 | + |
| 50 | + for i in range(epochs): |
| 51 | + for j in range(len(training_samples)): |
| 52 | + |
| 53 | + # training sample |
| 54 | + sample = training_samples[j] |
| 55 | + |
| 56 | + # Compute the winning vector |
| 57 | + winner = self_organizing_map.get_winner(weights, sample) |
| 58 | + |
| 59 | + # Update the winning vector |
| 60 | + weights = self_organizing_map.update(weights, sample, winner, alpha) |
| 61 | + |
| 62 | + # classify test sample |
| 63 | + sample = [0, 0, 0, 1] |
| 64 | + winner = self_organizing_map.get_winner(weights, sample) |
| 65 | + |
| 66 | + # results |
| 67 | + print(f"Clusters that the test sample belongs to : {winner}") |
| 68 | + print(f"Weights that have been trained : {weights}") |
| 69 | + |
| 70 | + |
| 71 | +# running the main() function |
| 72 | +if __name__ == "__main__": |
| 73 | + main() |
0 commit comments