-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcode.py
514 lines (355 loc) · 18.6 KB
/
code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# -*- coding: utf-8 -*-
'''
Author: Diksha Chhabra
'''
import pandas as pd
import numpy as np
from scipy.stats.stats import pearsonr
import random
import sys
#for all the movies taking the ratings of all users to that movie
#finding the average rating to that movie
#finding the k top rated movies
def top_k_movies_not_rated_by_target(ratings, k,target_user):
df_for_avg_k_movies = pd.DataFrame(columns=["movieId", "rating"])
movie_not_rated_by_target = ratings.loc[ratings['userId'] != target_user]
movie_not_rated_by_target = movie_not_rated_by_target[['movieId', 'rating']].copy()
not_rated_movies_by_target = set(list(movie_not_rated_by_target[['movieId']].values.flatten()))
for movie in not_rated_movies_by_target:
fetch_movie_rows = movie_not_rated_by_target.loc[movie_not_rated_by_target['movieId'] == movie]
fetch_ratings_for_movie = fetch_movie_rows[['rating']].values.flatten()
avg_rating_for_movie = np.divide(np.sum(fetch_ratings_for_movie, axis=0),len(fetch_ratings_for_movie))
df_for_avg_k_movies = df_for_avg_k_movies.append({ "movieId": movie, "rating": avg_rating_for_movie}, ignore_index=True)
df_for_avg_k_movies.sort_values('rating')
return df_for_avg_k_movies.head(k)
def find_movie_not_rated(target_user, ratings):
#movie_not_rated_by_target = ratings.loc[ratings['userId'] != target_user]
#movie_not_rated_by_target = movie_not_rated_by_target[['movieId', 'rating']].copy()
k_movies_not_rated_by_target = 100
top_K_movies_not_rated_by_target = top_k_movies_not_rated_by_target(ratings, k_movies_not_rated_by_target, target_user)
return top_K_movies_not_rated_by_target
def find_movie_rated(target_user, ratings):
movie_rated_by_target = ratings.loc[ratings['userId'] == target_user]
movie_rated_by_target = movie_rated_by_target[['movieId', 'rating']].copy()
return movie_rated_by_target
def find_pearson_coeff_list(ratings, all_users_minus_target_user, arr_movies, arr_rating):
pearson = []
for user in all_users_minus_target_user:
rated_movies_by_user = ratings.loc[ratings['userId'] == user].copy()
#rated_movies_by_user = list(rated_movies_by_user[['movieId']].values.flatten())
rating_by_user = []
for movie in arr_movies:
find_movie = rated_movies_by_user.loc[rated_movies_by_user['movieId'] == movie]
get_rating_on_movie = list(find_movie[['rating']].values.flatten())
#conditions to see whether a user has rated the movie or not
if get_rating_on_movie != []:
rating_by_user.append(get_rating_on_movie[0])
else:
rating_by_user.append(-1)
p_corr,p_value = pearsonr(arr_rating, rating_by_user)
#check if a number is nan or not --> if yes--> add -5000 to the list
if np.isnan(p_corr):
pearson.append(-500)
else:
pearson.append(p_corr)
return pearson
#getting the index of the top k users which are similar to the given user for K-NN
def find_k_max(k, list_coeff):
max_k_users = sorted(range(len(list_coeff)), key=lambda i: list_coeff[i])[-k:]
return max_k_users
def movies_rated_by_similar_users_which_target_hasnot_rated(ratings, max_k_users, all_users_minus_target_user, arr_movies):
#taking ids of all the similar users
similar_user_ids = []
#taking all the movies rated by similar user to suggest to the target user
similar_user_rated_movies = []
for user in max_k_users:
similar_user_ids.append(all_users_minus_target_user[user])
# user_rows = ratings.loc[ratings['userId'] == all_users_minus_target_user[user]]
# similar_user_rated_movies.extend(user_rows[['movieId']].values.flatten())
#From the movies which similar users has rated, removing the movies which target user has already seen
#similar_user_rated_movies = set(similar_user_rated_movies)-set(arr_movies)
# return similar_user_rated_movies, similar_user_ids
return similar_user_ids
def calculate_target_rating_on_unrated_movies(ratings, similar_user_ids, similar_user_rated_movies, max_k_users, target_user_avg_rating, list_coeff):
# new dataframe for storing the movieId and predicted rating by the target user on unrated movies
df_for_predicted = pd.DataFrame(columns=["movieId", "predictedRating"])
for movie in similar_user_rated_movies:
i=0
total_sum_of_similarities_and_ratings = 0.0
total_sum_of_similarities = 0.0
rating_of_target_user_to_ith_movie = 0.0
#rating given by each similar user to the kth movie
for eachSimilarUser in similar_user_ids:
similar_user_rows = ratings.loc[ratings['userId'] == eachSimilarUser]
average_rating_similar_user = np.divide(np.sum(similar_user_rows[['rating']].values.flatten(), axis=0),similar_user_rows.shape[0])
############ handle the case here where that movie is not rated by the user coz it's taking trash value
similar_user_rating_to_movie = similar_user_rows.loc[similar_user_rows['movieId'] == movie]
rating_value = similar_user_rating_to_movie[['rating']].values.flatten()
if(len(rating_value) > 0):
pearson_coeff_user = abs(list_coeff[max_k_users[i]])
###### check here if list_coeff[max_k_users[i]] is equal to -5000....don't consider it
total_sum_of_similarities_and_ratings = total_sum_of_similarities_and_ratings + (pearson_coeff_user * (rating_value[0] - average_rating_similar_user))
total_sum_of_similarities = total_sum_of_similarities + pearson_coeff_user
i = i+1
if(total_sum_of_similarities != 0):
rating_of_target_user_to_ith_movie = target_user_avg_rating + (total_sum_of_similarities_and_ratings/total_sum_of_similarities)
############ handle the else case --> NO NEED ###############################
df_for_predicted = df_for_predicted.append({ "movieId": movie, "predictedRating": rating_of_target_user_to_ith_movie}, ignore_index=True)
return df_for_predicted
def user_user_recommendation(ratings, target_user, movie_not_rated_by_target, movie_rated_by_target, k):
rated_movies_by_target = movie_rated_by_target[['movieId']]
ratings_by_target = movie_rated_by_target[['rating']]
not_rated_movies_by_target = list(set(list(movie_not_rated_by_target[['movieId']].values.flatten())))
#converting to 1-D array of all movies rated by target user
arr_movies = list(rated_movies_by_target.values.flatten())
arr_rating = list(ratings_by_target.values.flatten())
#print(list(arr_movies))
num_movies = len(arr_movies)
all_users_minus_target_user = list(set(all_users) - set([target_user]))
pearson = find_pearson_coeff_list(ratings, all_users_minus_target_user, arr_movies, arr_rating)
list_coeff = pearson
max_k_users = find_k_max(k, list_coeff)
similar_user_ids = movies_rated_by_similar_users_which_target_hasnot_rated(ratings, max_k_users, all_users_minus_target_user, arr_movies)
#avg rating by target
target_user_avg_rating = (np.divide(np.sum(ratings_by_target,axis = 0),len(ratings_by_target)).values.flatten())[0]
# dataframe for predicted movies using KNN
df_for_predicted = calculate_target_rating_on_unrated_movies(ratings, similar_user_ids, not_rated_movies_by_target, max_k_users, target_user_avg_rating, list_coeff)
return df_for_predicted
def item_item_recommendation(ratings, movie_rated_by_target, movie_not_rated_by_target, k):
ratings_by_target = movie_rated_by_target[['rating']]
rated_movies_by_target = movie_rated_by_target[['movieId']]
#arr_rating = list(ratings_by_target.values.flatten())
#Getting all the movies not rated by the target
movies_ids_not_rated_by_target = list(set(list(movie_not_rated_by_target[["movieId"]].values.flatten())))
#converting to 1-D array of all movies rated by target user
arr_movies = list(rated_movies_by_target.values.flatten())
arr_rating = list(ratings_by_target.values.flatten())
#movies rated by target - we have in list 'arr_movies'
#looping through the movies seen by the target
df_for_predicted = pd.DataFrame(columns=["movieId", "predictedRating"])
#for all the movies not seen by the target user
for movie_notSeen in movies_ids_not_rated_by_target:
person_coeff_for_ItemBased = []
for movie_seen in arr_movies:
ratings_allusers_movieSeen_byTarget = []
ratings_allusers_movieNotSeen_byTarget = []
#all the users who have seen the movie seen by the target user
users_in_movieSeen = (ratings.loc[ratings["movieId"] == movie_seen])[['userId']].values.flatten()
#all the users who have seen the movie for which we are predicted the rating
users_in_movieNotSeen = (ratings.loc[ratings["movieId"] == movie_notSeen])[['userId']].values.flatten()
#users who saw both the movie seen by the target user and movie we are predicting
users_commmon_inBoth = list(set(users_in_movieSeen) & set(users_in_movieNotSeen))
for user in users_commmon_inBoth:
movies_rated = (ratings.loc[ratings["movieId"] == movie_seen])
rating = (movies_rated.loc[ratings["userId"] == user])[['rating']].values.flatten()
ratings_allusers_movieSeen_byTarget.append(rating[0])
movies_not_rated = (ratings.loc[ratings["movieId"] == movie_notSeen])
rating = (movies_not_rated.loc[ratings["userId"] == user])[['rating']].values.flatten()
ratings_allusers_movieNotSeen_byTarget.append(rating[0])
p_corr,p_value = pearsonr(ratings_allusers_movieNotSeen_byTarget,ratings_allusers_movieSeen_byTarget)
#check if a number is nan or not --> if yes--> add -5000 to the list
if np.isnan(p_corr):
person_coeff_for_ItemBased.append(-500)
else:
person_coeff_for_ItemBased.append(p_corr)
max_k_movies = sorted(range(len(person_coeff_for_ItemBased)), key=lambda i: person_coeff_for_ItemBased[i])[-k:]
#calculating the predicted rating that the target user rates the target item
sum_of_similarities = 0
sum_of_similarities_and_rating = 0
for movie in max_k_movies:
sum_of_similarities += person_coeff_for_ItemBased[movie]
# print(len(arr_rating))
# print(movie)
sum_of_similarities_and_rating += (person_coeff_for_ItemBased[movie] * arr_rating[movie])
predicted_rating_to_targetedItem = (sum_of_similarities_and_rating/sum_of_similarities)
if predicted_rating_to_targetedItem > 5.0:
predicted_rating_to_targetedItem = 5
#print(predicted_rating_to_targetedItem)
df_for_predicted = df_for_predicted.append({ "movieId": movie_notSeen, "predictedRating": predicted_rating_to_targetedItem}, ignore_index=True)
return df_for_predicted
'''
#####################################
############ main function ############
########################################
'''
TargetUser = sys.argv[1]
K = sys.argv[2]
ratings_file = sys.argv[3]
movies_file = sys.argv[4]
movies = pd.read_csv(movies_file)
ratings = pd.read_csv(ratings_file)
ratings = ratings[['userId','movieId', 'rating']].copy()
#ratings.head(5)
target_user = int(TargetUser)
k=int(K)
if k<30:
k = 30
#number of users
all_users = ratings['userId'].unique()
# find all the movies rated and not rated by him
movie_not_rated_by_target = find_movie_not_rated(target_user, ratings)
movie_rated_by_target = find_movie_rated(target_user, ratings)
"""########################################
USER USER BASED COLLABORATIVE FILTERING
##########################################
"""
######## calling the function ...returns the movie ratings on the non-rated movies ####&&&&&&))))))))))))))))
df_for_predicted = user_user_recommendation(ratings, target_user, movie_not_rated_by_target, movie_rated_by_target, k)
# finding the top 10 predicted by K-NN movies for the user recommendation.
#finding the dataframe with movie id and it's rating on the basis of max rating
df_top_movies = df_for_predicted.sort_values('predictedRating', ascending=False).head(10)
#print(df_top_movies)
movieIds_to_recommend = df_top_movies[['movieId']].values.flatten()
#join the two dataframes on movieId
mergedMovies = pd.merge(df_top_movies, movies, on=['movieId'], how='inner')
## show the list of names of top 10 movies to the target as recommendation
print()
print("############################")
print("USER USER RECOMMENDATION RESULT")
print("The top movies that should be recommended to the target user are:")
print(mergedMovies)
print()
print("############################")
print()
"""########################################
ITEM ITEM BASED COLLABORATIVE FILTERING
##########################################
"""
#Item-Item based filtering
#this approach tries to capture how the active user rates the similar items.
df_for_predicted = item_item_recommendation(ratings, movie_rated_by_target, movie_not_rated_by_target, k)
# finding the top 10 predicted by K-NN movies for the user recommendation.
#finding the dataframe with movie id and it's rating on the basis of max rating
df_top_movies = df_for_predicted.nlargest(10, 'predictedRating')
#join the two dataframes on movieId
mergedMovies1 = pd.merge(df_top_movies, movies, on=['movieId'], how='inner')
## show the list of names of top 10 movies to the target as recommendation
print()
print("############################")
print("ITEM ITEM RECOMMENDATION RESULT")
print("The top movies that should be recommended to the target user are:")
print(mergedMovies1)
print()
print("############################")
print()
'''
########################################
########### BELOW PART is for finding the optimal value of K for our project
#######################################
'''
'''
###### code for testing user user
## getting 10% of movies rated by the target as not rated
## other 90% as rated
movie_rated_by_target = find_movie_rated(target_user, ratings)
#print(movie_rated_by_target.shape[0])
percent10 = int((movie_rated_by_target.shape[0]*0.1))
test_movies = movie_rated_by_target.head(percent10)
#print(test_movies)
train_movies = movie_rated_by_target.tail(movie_rated_by_target.shape[0]-percent10)
k_values=[30]
df_k_vs_RMSE = pd.DataFrame(columns=["k1", "RMSE1"])
for k in k_values:
print(k)
df_for_predicted = user_user_recommendation(ratings, target_user, test_movies, train_movies, k)
predicted = np.array(df_for_predicted['predictedRating'].values.flatten())
true = np.array(test_movies['rating'].values.flatten())
RMSE = np.sqrt(((predicted - true) ** 2).mean())
df_k_vs_RMSE = df_k_vs_RMSE.append({ "k1": k, "RMSE1": RMSE}, ignore_index = True)
print(RMSE)
print(df_k_vs_RMSE)
## testing for Item Item based
## getting 10% of movies rated by the target as not rated
## other 90% as rated
movie_rated_by_target = find_movie_rated(target_user, ratings)
movie_not_rated_by_target = find_movie_not_rated(target_user, ratings)
percent10 = int((movie_rated_by_target.shape[0]*0.1))
test_movies = movie_rated_by_target.head(percent10)
train_movies = movie_rated_by_target.tail(movie_rated_by_target.shape[0]-percent10)
df_k_vs_RMSE = pd.DataFrame(columns=["k1", "RMSE1"])
k_values = [50,100,150,200,250,300]
#check for different values of k to plot the graph
for k in k_values:
df_for_predicted = item_item_recommendation(ratings, train_movies, test_movies, k)
#save it in a file
filename = "{}{}{}".format("/content/drive/My Drive/colab/movielens/df_for_predicted_item_item_", k, ".csv")
f = open(filename, 'w')
df_for_predicted.to_csv(f, columns = ["movieId", "predictedRating"])
f.close()
predicted = np.array(df_for_predicted['predictedRating'].values.flatten())
true = np.array(test_movies['rating'].values.flatten())
RMSE = np.sqrt(((predicted - true) ** 2).mean())
df_k_vs_RMSE = df_k_vs_RMSE.append({ "k1": k, "RMSE1": RMSE}, ignore_index = True)
print(RMSE)
print(df_k_vs_RMSE)
filename = "{}".format("/content/drive/My Drive/colab/movielens/prediction_item_item_k_vs_RMSE.csv")
f = open(filename, 'w')
df_k_vs_RMSE.to_csv(f)
f.close()
"""######################
**GRAPH Plotting**
######################
"""
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('dark')
# %matplotlib inline
## USER USER RMSE graphs
user_user_k_vs_RMSE = pd.read_csv("/content/drive/My Drive/colab/movielens/user_user_k_vs_RMSE.csv")
plt.figure(figsize=(8,6))
plt.rcParams['patch.force_edgecolor'] = True
plt.scatter(user_user_k_vs_RMSE['k1'], user_user_k_vs_RMSE['RMSE1'])
plt.xlabel('k values')
plt.ylabel('RMSE')
plt.show()
## ITEM ITEM RMSE graphs
item_item_k_vs_RMSE = pd.read_csv("/content/drive/My Drive/colab/movielens/prediction_item_item_k_vs_RMSE.csv")
plt.figure(figsize=(8,6))
plt.rcParams['patch.force_edgecolor'] = True
plt.scatter(item_item_k_vs_RMSE['k1'], item_item_k_vs_RMSE['RMSE1'])
plt.xlabel('k values')
plt.ylabel('RMSE')
plt.show()
k = 30
f = "/content/drive/My Drive/colab/movielens/prediction_user_user_top10_30.csv"
result = pd.read_csv(f)
result = result.head(10)
#join the two dataframes on movieId
result = pd.merge(result, movies, on=['movieId'], how='inner')
result.head(10)
# 1) No of people who rated the top 100 ratings that is , rating counts of top 100 movies.....histogram
movie_data = pd.merge(ratings, movies, on='movieId',how = 'inner')
#movie_data.groupby('movieId')['rating'].mean().head()
#movie_data.groupby('title')['rating'].count().sort_values(ascending=False).head(100)
ratings_mean_count = pd.DataFrame(movie_data.groupby('title')['rating'].mean())
ratings_mean_count['rating_counts'] = pd.DataFrame(movie_data.groupby('title')['rating'].count())
ratings_mean_count.head()
plt.figure(figsize=(8,6))
plt.rcParams['patch.force_edgecolor'] = True
ratings_mean_count['rating_counts'].hist(bins=50)
#movie_data.groupby('title')['rating'].count().sort_values(ascending=False).head()
#ratings_mean_count['rating_counts'] = pd.DataFrame(movie_data.groupby('title')['rating'].count())
#print(ratings_mean_count.head())
# 2) Histogram for average ratings
plt.figure(figsize=(8,6))
plt.rcParams['patch.force_edgecolor'] = True
plt.xlabel('Average Ratings')
plt.ylabel('No. of average ratings')
ratings_mean_count['rating'].hist(bins=50)
# 3) ratings_counts vs ratings
plt.figure(figsize=(8,6))
plt.rcParams['patch.force_edgecolor'] = True
sns.jointplot(x='rating', y='rating_counts', data=ratings_mean_count, alpha=0.4)
##
user_movie_rating = movie_data.pivot_table(index='userId', columns='title', values='rating')
#print(user_movie_rating)
forrest_gump_ratings = user_movie_rating['Forrest Gump (1994)']
movies_like_forest_gump = user_movie_rating.corrwith(forrest_gump_ratings)
corr_forrest_gump = pd.DataFrame(movies_like_forest_gump, columns=['Correlation'])
corr_forrest_gump.dropna(inplace=True)
corr_forrest_gump.head()
corr_forrest_gump.sort_values('Correlation', ascending=False).head(10)
corr_forrest_gump = corr_forrest_gump.join(ratings_mean_count['rating_counts'])
corr_forrest_gump.sort_values('Correlation', ascending=False).head(10)
corr_forrest_gump[corr_forrest_gump ['rating_counts']>50].sort_values('Correlation', ascending=False).head()
'''