-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubsetSum.java
591 lines (500 loc) · 21.3 KB
/
subsetSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
/**
* subsetSum.java
* Instructor: PB
* Final Project
*
* Author: RM and HN
*
* Subset Sum (SUM)
* Input: S[1 ... n] a list of n positive integers and t a target integer.
* Output: true, and A -> {1, ..., n} a set of indices such that the sum S[i] = t
* if such an A exists, and false otherwise.
*/
import java.lang.*;
import java.util.*;
/**
* This class ia a driver program using Population and Genome classes
* for Assignment 2.
*
* @author RM and HN
* @version 12 March 2020
*/
public class tcss343 {
/**
* Main function, driving Population and Genome class.
*
* @param args
*/
public static void main(String[] args) {
System.out.println("Hello World!");
List<Integer> list = Arrays.asList(2, 3, 5, 7, 9);
List<Integer> list2 = Arrays.asList(1, 2, 3, 5, 7, 9, 10, 11);
ArrayList<Integer> newList = new ArrayList<Integer>(list2);
//System.out.println(newList);
//all_possible_subsets(newList);
// 7 or (111)b, 7 >> 1 means Shift 7 or (111)b to the right by 1 into 3 or (11)b
//System.out.println( Integer.toBinaryString(7 >> 1) );
//all_possible_subsets(newList);
//brute_force(newList, 20);
// Boolean[][] myTable = dynamic_programming(newList, 20);
//dp_recover(newList, 20, myTable);
// List to keep the runtimes of each program
ArrayList<Long> timeList = new ArrayList<>(50);
//Driver(30, 1000, true);
try {
for(int x = 5; x <= 35; x++)
{
timeList.add(Driver(x, 1000000, false));
System.gc();
}
} catch(Error e) {
System.out.println(e);
System.out.println(timeList);
}
System.out.println(timeList);
//Driver(20, 1000, true);
//Driver(100, 1000, false);
//Driver(100, 1000, true);
//clever_algorithm(newList, 20);
}
/**
* Driver program to test the runtimes of the Subset Sum Algorithms.
* Creates a random set of size 'n' random elements with range 1 ~ 'r'
*
* @param n - Number of elements in the randomized set
* @param r - Max Range of values
* @param v - Boolean. If true, guarantees a solution. If false, makes sure
* there is no solution to the target.
* @return
*/
public static long Driver(int n, int r, Boolean v) {
Random rand = new Random();
ArrayList<Integer> mySet = new ArrayList<>(n);
int randTarget = 0;
ArrayList<Integer> randSet = new ArrayList<>();
Integer sum = 0;
for (int i = 0; i < n; i++)
{
mySet.add(rand.nextInt(r) + 1);
}
// Number of digits in the random subset
int digits = rand.nextInt(n) + 1;
int randelement;
int bound = 1;
for (int x = 0; x < digits; x++)
{
if(mySet.size() - 1 > 1) {
bound = mySet.size() - 1;
} else {
bound = 1;
}
randelement = rand.nextInt(bound);
randSet.add(mySet.get(randelement));
mySet.remove(randelement);
}
mySet.addAll(randSet);
System.out.println("mySet: "+ mySet);
System.out.println("randSet: " + randSet);
/* If v is true, let the sum of randSet's elements be the random target.
*
* Else, (v is false), Find the total sum of all subsets. Set that total
* sum as the minimum possible number to choose a random target.
*/
if (v) {
for(Integer i: randSet) {
randTarget += i;
}
} else {
List<Integer> subset;
sum = 0;
// Iterate to each subset to check if each one sums to the target
for (Integer i : mySet)
{
sum += i;
}
//System.out.println("sum: " + sum);
randTarget = rand.nextInt(sum) + rand.nextInt(1000);
}
System.out.println("n: " + n + " r: " + r + " v: " + v +" random target: " + randTarget);
long startTime;
long endTime;
long totalTime = 0;;
// Measure start time
/*
if(n < 25) {
System.out.print("Brute Force: ");
startTime = System.currentTimeMillis();
//System.out.println("Brute Force Answer: " + brute_force(mySet, randTarget));
brute_force(mySet, randTarget);
// Timekeeping
endTime = System.currentTimeMillis();
totalTime = endTime - startTime;
System.out.println(mySet.size() + " elements Brute Force Time: " + totalTime + " ms\n");
}*/
//System.out.println("Dynamic Programming: ");
// Measure start time
//startTime = System.currentTimeMillis();
// Run dynamic programming
//Boolean [][] dpTable = dynamic_programming(mySet, randTarget);
//System.out.println("Dynamic Programming Recover from Table Answer: " + dp_recover(mySet, randTarget, dpTable));
//dp_recover(mySet, randTarget, dpTable);
// Timekeeping
//endTime = System.currentTimeMillis();
////totalTime = endTime - startTime;
//System.out.println(mySet.size() + " elements DP Time: " + totalTime + " ms\n");
System.out.print("Clever Algorithm ");
// Measure start time
startTime = System.currentTimeMillis();
// Run Clever Algorithm
clever_algorithm(mySet, randTarget);
// Timekeeping
endTime = System.currentTimeMillis();
totalTime = endTime - startTime;
System.out.println(mySet.size() + " elements Clever Time: " + totalTime + " ms\n");
return totalTime;
}
/**
* "Clever Algorithm" That solves the Subset Sum problem
*
* @param theSet - The given set to find if a subset of it adds up to target.
* @param theTarget - The given target that a subset must sum up to.
* @return - ArrayList. Returns an Subset of theSet that sums to the target.
*/
public static ArrayList<Integer> clever_algorithm(ArrayList<Integer> theSet, int theTarget) {
ArrayList<Integer> firstHalf = new ArrayList<>(theSet.subList(0, theSet.size()/2));
ArrayList<Integer> secondHalf = new ArrayList<>(theSet.subList(theSet.size()/2, theSet.size()));
//System.out.println(theSet);
//System.out.println("First Half:" + firstHalf);
//System.out.println(secondHalf);
// Find all possible subsets in the set
ArrayList<List<Integer>> firstHalfSubsetsL = all_possible_subsets(firstHalf);
ArrayList<List<Integer>> secondHalfSubsetsH = all_possible_subsets(secondHalf);
//System.out.println("1st Subsets" + firstHalfSubsetsL);
//System.out.println("2nd Subsets " + secondHalfSubsetsH);
// Create a list of subsets to store the answers
ArrayList<List<Integer>> T = new ArrayList<>();
ArrayList<List<Integer>> W = new ArrayList<>();
// Declare a sum variable
Integer sum;
List<Integer> subset;
List<Integer> subsetj;
// Iterate to each subset to check if each one sums to the target
for (Iterator<List<Integer>> i = firstHalfSubsetsL.iterator(); i.hasNext();)
{
// Reset the sum for every new subset
sum = 0;
// Enter the next subset
subset = i.next();
// For each integer in the subset, add to sum
for(int j = 0; j < subset.size(); j++)
{
sum += subset.get(j);
}
//System.out.println(sum);
// Check if the sum is LESS than or equal to the target
// If equal, we are done. Therefore return this subset.
// Else if LESS than, Add it to table T
if(sum.equals(theTarget)) {
System.out.println("TRUE. A subset was found to sum to the target. ");
return new ArrayList<Integer>(subset);
} else if (sum < theTarget ) {
T.add(subset);
}
}
// Iterate to each subset to check if each one sums to the target
for (Iterator<List<Integer>> i = secondHalfSubsetsH.iterator(); i.hasNext();)
{
// Reset the sum for every new subset
sum = 0;
// Enter the next subset
subset = i.next();
// For each integer in the subset, add to sum
for(int j = 0; j < subset.size(); j++)
{
sum += subset.get(j);
}
//System.out.println(sum);
// Check if the sum is LESS than the target
// If so, add the subset to List 'T'
if(sum.equals(theTarget)) {
System.out.println("TRUE. A subset was found to sum to the target. ");
System.out.print("Subset Sum: " + subset + "\n");
return new ArrayList<Integer>(subset);
} else if (sum < theTarget ) {
W.add(subset);
}
}
//System.out.println("Clever\n T: " + T + "\n W: " + W);
Collections.sort(W, new ListSumComparator());
Collections.sort(T, new ListSumComparator());
//System.out.println("Sorted W: " + W + "\n");
//System.out.println("W Sums: ");
/*
* 5. For each entry I in table T, find the subset J subset H that
* yields the maximum weight not exceeding t when joined to I. If
* equality holds for some I and some J, then return TRUE and I join J
* and stop.
*
*/
for(Iterator<List<Integer>> i = T.iterator(); i.hasNext();) {
// Reset the sum for every new subset
sum = 0;
// Enter the next subset in T
subset = i.next();
// Find the Sum of the elements in I.
for(int x = 0; x < subset.size(); x++)
{
sum += subset.get(x);
}
// Now find the Sum of each subset in W,.
for(Iterator<List<Integer>> j = W.iterator(); j.hasNext();)
{
// Enter next subset in W
subsetj = j.next();
// For each element in this subset, add it to the sum.
for(int y = 0; y < subsetj.size(); y++)
{
sum += subsetj.get(y);
}
// Compare this sum to the target. If it's equal, join I and J
// Then return this subset.
if (sum.equals(theTarget)) {
ArrayList<Integer> subsetSum= new ArrayList<>();
subsetSum.addAll(subset);
subsetSum.addAll(subsetj);
return subsetSum;
}
}
}
System.out.println("FALSE. No subset found.");
return new ArrayList<Integer>();
}
/**
* Dynamic Programming implementation to solve the Subset Sum problem. This
* algorithm creates a table of n by t. n denoted by the size of the set and
* t, the target integer.
*
* @param theSet - The given set that one of its subset must sum to the target.
* @param theTarget - The given target that a subset of the set must sum to.
* @return - Return an n by t boolean table. For the table to answer the
* Subset Sum problem, one of the elements of the last column must be true.
*/
public static Boolean[][] dynamic_programming(ArrayList<Integer> theSet, long theTarget) {
// Variable Initialization
int setSize = theSet.size();
// Let A[1...n][0...t] be an array of integers of size n x (t+1)
Boolean[][] myTruthTable = new Boolean[setSize][(int)theTarget+1];
// Initialize all elements in the table to be false.
for(int x = 0; x < myTruthTable.length; x++) {
for(int y = 0; y < myTruthTable[0].length; y++) {
myTruthTable[x][y] = false;
}
}
// For i =1 to n do:
// Let A[i][0] = true
for(int i = 0; i < setSize; i++) {
myTruthTable[i][0] = true;
}
/* For j = 1 to t:
* If S[1] = j Let A[1][j] = true
* Else Let A[1][j] = false
*/
for (int j = 1; j <= theTarget; j++)
{
if((theSet.get(0).equals(j))) {
myTruthTable[0][j] = true;
} else {
myTruthTable[0][j] = false;
}
}
/**
* For i = 2 to n do:
* For j = 1 to t:
* If j >= S[i] Let A[i][j] = A[i - 1][j] or A[i - 1][j - S[i]]
* Else Let A[i][j] = A[i - 1][j]
*/
for(int i = 1; i < setSize; i++)
{
for (int j = 1; j <= theTarget; j++) {
if (j >= theSet.get(i)) {
myTruthTable[i][j] = myTruthTable[i - 1][j];
myTruthTable[i][j] = myTruthTable[i-1][j]|| myTruthTable[i - 1][j - theSet.get(i)];
} else {
myTruthTable[i][j] = myTruthTable[i - 1][j];
}
}
}
//System.out.println("Size: " + myTruthTable.size + " bytes");
// Return A[n][t]
return myTruthTable;
}
/**
* Recovers the subset that is shown to have been found by dynamic
* Programming's table.
*
* This algorithm recovers a solution from the table Dynamic Programming
* creates by backtracking, starting in the bottom right most corner. Once
* it finds a true element in the last column, it starts subtracting
* theTarget until it is 0. (#)The target is subtracted by referencing the
* current element's row position and obtaining theSet's element on that row
* number. For example, if the current position in the table is [12][4],
* then the 4th integer in the set is used to subtract from theTarget integer.
*
* The new target integer is then referenced as the next column. So if the
* 4th integer was 9, then the current position is [3][4]. Now we go up a
* row until we hit a false or limit above the current position. Then we
* repeat the steps above by subtracting the sum.
*
* @param theTable The given Boolean[][] table created by Dynamic Programming
* @return
*/
public static ArrayList<Integer> dp_recover(ArrayList<Integer> theSet, long theTarget, Boolean[][] theTable) {
Boolean noTrueFound = true;
// Check if the Dynamic Programming gave us a good table!
for(int i = 0; i < theTable.length; i++) {
if(theTable[i][theTable[0].length - 1]) {
noTrueFound = false;
}
}
// If no True was found in the last column, Dynamic Programming did not
// give us a good table.
if(noTrueFound) {
System.out.println("No possible subsets that sum to the target");
return null;
}
// Initialize Variables
ArrayList<Integer> recoveredAnswer = new ArrayList<>();
int row = theTable.length - 1; // 4
int col = theTable[0].length - 1; // 11
//System.out.print(col);
Boolean currentElement = false;
int counter = 0; // 5
long sum = theTarget; // 12
int currentRow, currentCol;
currentRow = row;
currentCol = col;
//System.out.println("theTable: " + Arrays.deepToString(theTable));
// Iteration and backtracking to find the subset that sum to the target.
while( sum > 0) {
// System.out.println("Counter: " + counter);
// Check if the a row above the currentRow exists
// AND if the element directly above it is true or false.
// If true then we move up
// ELSE we move left by subtracting the
if( currentRow - 1 >= 0 && theTable[currentRow - 1][currentCol])
{
currentRow = currentRow - 1;
currentElement = theTable[currentRow][currentCol];
} else {
sum = sum - theSet.get(currentRow);
currentCol = currentCol - theSet.get(currentRow);
recoveredAnswer.add(theSet.get(currentRow));
counter = -1;
}
//Uncomment to check the step by step of recovering the set
//System.out.println("Sum: " + sum);
//System.out.println( "Col: " + currentCol + " Row: " + currentRow);
//System.out.println(recoveredAnswer);
//System.out.println();
counter += 1;
}
//System.out.println(recoveredAnswer);
return recoveredAnswer;
}
/**
* Brute force solution to the Subset Sum problem.
*
* @param theSet - A list of n positive integers.
* @param theTarget - A target integer that the subset should sum to.
* @return - A list of subsets that sum to the target integer. If there are
* no such subset, then an empty list of subsets is returned.
*/
public static ArrayList<Integer> brute_force(ArrayList<Integer> theSet, Integer theTarget) {
// Find all possible subsets in the set
ArrayList<List<Integer>> allSubsets = all_possible_subsets(theSet);
// Declare a sum variable
Integer sum;
// Iterate to each subset to check if each one sums to the target
for (Iterator<List<Integer>> i = allSubsets.iterator(); i.hasNext();)
{
// Reset the sum for every new subset
sum = 0;
// Enter the next subset
List<Integer> item = i.next();
// For each integer in the subset, add to sum
for(int j = 0; j < item.size(); j++)
{
sum += item.get(j);
}
//System.out.println(sum);
// Check if the sum is equal to the target
if(sum.equals(theTarget))
{
//System.out.println("Sum: " + sum + " matches target: " + theTarget);
//System.out.println("Valid Answers: " + item);
return new ArrayList<Integer>(item);
}
}
return null;
}
/**
* Given a set, this function finds all the subsets of that set and
* stores it in a ArrayList of lists
* @param theSet - The set that the functions uses to find its subsets
* @return A List with each element containing a subset of the given set.
*/
public static ArrayList<List<Integer>> all_possible_subsets(ArrayList<Integer> theSet) {
// Measure start time
long startTime = System.currentTimeMillis();
// Variable Declarations and Initializations
ArrayList<List<Integer>> theSubSets = new ArrayList<List<Integer>>(1000);
ArrayList<Integer> subSet;
int setSize = theSet.size();
int i, j = 0;
// Source: https://www.geeksforgeeks.org/finding-all-subsets-of-a-given-set-in-java/
// References an element in the set to a binary position. Ex. 01 is the
// first element in the set. If we have n integers, then we have 2^n
// bits. One bit for each integer in the set.
// Example:
// Set: {2, 3, 5, 7, 9}. (101b) is the subset: {2, 5}
// (1111)b is the subset {2, 3, 5, 7}
// Outer For loop to iterator per subset. (1 << setSize) = 2^{setSize} -1
for(i = 0; i < (1 << setSize); i++) {
// Create a new subset
subSet = new ArrayList<Integer>();
// For each integer in the set
for(j = 0; j < setSize; j++)
{
// Bitwise i & (1 << j)
// Example: i = 1,
if ((i & (1 << j)) > 0) {
//System.out.print(theSet.get(j) + " ");
subSet.add(theSet.get(j));
}
}
//System.out.println();
theSubSets.add(subSet);
}
//System.out.println(theSubSets);
long endTime = System.currentTimeMillis();
long totalTime = endTime - startTime;
//System.out.println("Finding all possible subsets Time: " + totalTime + " ms");
return theSubSets;
}
static class ListSumComparator implements Comparator<List<Integer>> {
@Override
public int compare(List<Integer> first, List<Integer> second) {
int firstSum = 0;
int secondSum = 0;
for (int x : first )
{
firstSum += x;
}
for (int y : second )
{
secondSum += y;
}
return firstSum - secondSum;
}
}
}