You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: arxiv.json
+35Lines changed: 35 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -42509,5 +42509,40 @@
42509
42509
"pub_date": "2025-03-11",
42510
42510
"summary": "Large Language Models (LLMs) are increasingly utilized in scientific research assessment, particularly in automated paper review. However, existing LLM-based review systems face significant challenges, including limited domain expertise, hallucinated reasoning, and a lack of structured evaluation. To address these limitations, we introduce DeepReview, a multi-stage framework designed to emulate expert reviewers by incorporating structured analysis, literature retrieval, and evidence-based argumentation. Using DeepReview-13K, a curated dataset with structured annotations, we train DeepReviewer-14B, which outperforms CycleReviewer-70B with fewer tokens. In its best mode, DeepReviewer-14B achieves win rates of 88.21\\% and 80.20\\% against GPT-o1 and DeepSeek-R1 in evaluations. Our work sets a new benchmark for LLM-based paper review, with all resources publicly available. The code, model, dataset and demo have be released in http://ai-researcher.net.",
"title": "Search-R1: Training LLMs to Reason and Leverage Search Engines with\n Reinforcement Learning",
42515
+
"url": "http://arxiv.org/abs/2503.09516v1",
42516
+
"pub_date": "2025-03-12",
42517
+
"summary": "Efficiently acquiring external knowledge and up-to-date information is essential for effective reasoning and text generation in large language models (LLMs). Retrieval augmentation and tool-use training approaches where a search engine is treated as a tool lack complex multi-turn retrieval flexibility or require large-scale supervised data. Prompting advanced LLMs with reasoning capabilities during inference to use search engines is not optimal, since the LLM does not learn how to optimally interact with the search engine. This paper introduces Search-R1, an extension of the DeepSeek-R1 model where the LLM learns -- solely through reinforcement learning (RL) -- to autonomously generate (multiple) search queries during step-by-step reasoning with real-time retrieval. Search-R1 optimizes LLM rollouts with multi-turn search interactions, leveraging retrieved token masking for stable RL training and a simple outcome-based reward function. Experiments on seven question-answering datasets show that Search-R1 improves performance by 26% (Qwen2.5-7B), 21% (Qwen2.5-3B), and 10% (LLaMA3.2-3B) over SOTA baselines. This paper further provides empirical insights into RL optimization methods, LLM choices, and response length dynamics in retrieval-augmented reasoning. The code and model checkpoints are available at https://github.com/PeterGriffinJin/Search-R1.",
"title": "Learning Cascade Ranking as One Network",
42522
+
"url": "http://arxiv.org/abs/2503.09492v1",
42523
+
"pub_date": "2025-03-12",
42524
+
"summary": "Cascade Ranking is a prevalent architecture in large-scale top-k selection systems like recommendation and advertising platforms. Traditional training methods focus on single-stage optimization, neglecting interactions between stages. Recent advances such as RankFlow and FS-LTR have introduced interaction-aware training paradigms but still struggle to 1) align training objectives with the goal of the entire cascade ranking (i.e., end-to-end recall) and 2) learn effective collaboration patterns for different stages. To address these challenges, we propose LCRON, which introduces a novel surrogate loss function derived from the lower bound probability that ground truth items are selected by cascade ranking, ensuring alignment with the overall objective of the system. According to the properties of the derived bound, we further design an auxiliary loss for each stage to drive the reduction of this bound, leading to a more robust and effective top-k selection. LCRON enables end-to-end training of the entire cascade ranking system as a unified network. Experimental results demonstrate that LCRON achieves significant improvement over existing methods on public benchmarks and industrial applications, addressing key limitations in cascade ranking training and significantly enhancing system performance.",
"title": "Towards Next-Generation Recommender Systems: A Benchmark for\n Personalized Recommendation Assistant with LLMs",
42529
+
"url": "http://arxiv.org/abs/2503.09382v1",
42530
+
"pub_date": "2025-03-12",
42531
+
"summary": "Recommender systems (RecSys) are widely used across various modern digital platforms and have garnered significant attention. Traditional recommender systems usually focus only on fixed and simple recommendation scenarios, making it difficult to generalize to new and unseen recommendation tasks in an interactive paradigm. Recently, the advancement of large language models (LLMs) has revolutionized the foundational architecture of RecSys, driving their evolution into more intelligent and interactive personalized recommendation assistants. However, most existing studies rely on fixed task-specific prompt templates to generate recommendations and evaluate the performance of personalized assistants, which limits the comprehensive assessments of their capabilities. This is because commonly used datasets lack high-quality textual user queries that reflect real-world recommendation scenarios, making them unsuitable for evaluating LLM-based personalized recommendation assistants. To address this gap, we introduce RecBench+, a new dataset benchmark designed to access LLMs' ability to handle intricate user recommendation needs in the era of LLMs. RecBench+ encompasses a diverse set of queries that span both hard conditions and soft preferences, with varying difficulty levels. We evaluated commonly used LLMs on RecBench+ and uncovered below findings: 1) LLMs demonstrate preliminary abilities to act as recommendation assistants, 2) LLMs are better at handling queries with explicitly stated conditions, while facing challenges with queries that require reasoning or contain misleading information. Our dataset has been released at https://github.com/jiani-huang/RecBench.git.",
"summary": "In the current literature, most embedding models are based on the encoder-only transformer architecture to extract a dense and meaningful representation of the given input, which can be a text, an image, and more. With the recent advances in language modeling thanks to the introduction of Large Language Models, the possibility of extracting embeddings from these large and extensively trained models has been explored. However, current studies focus on textual embeddings in English, which is also the main language on which these models have been trained. Furthermore, there are very few models that consider multimodal and multilingual input. In light of this, we propose an adaptation methodology for Large Vision-Language Models trained on English language data to improve their performance in extracting multilingual and multimodal embeddings. Finally, we design and introduce a benchmark to evaluate the effectiveness of multilingual and multimodal embedding models.",
42539
+
"translated": "在当前的研究文献中,大多数嵌入模型都基于仅编码器(encoder-only)的Transformer架构,用于提取给定输入的密集且有意义的表示,该输入可以是文本、图像等。随着大语言模型(Large Language Models)的引入,语言建模领域取得了显著进展,研究人员开始探索从这些经过大规模训练的模型中提取嵌入的可能性。然而,目前的研究主要集中在英语文本嵌入上,这也是这些模型主要训练的语言。此外,极少有模型能够处理多模态和多语言的输入。基于此,我们提出了一种适应方法,针对在英语数据上训练的大规模视觉-语言模型(Large Vision-Language Models),以提升其在提取多语言和多模态嵌入方面的性能。最后,我们设计并引入了一个基准测试,用于评估多语言和多模态嵌入模型的有效性。"
42540
+
},
42541
+
{
42542
+
"title": "LREF: A Novel LLM-based Relevance Framework for E-commerce",
42543
+
"url": "http://arxiv.org/abs/2503.09223v1",
42544
+
"pub_date": "2025-03-12",
42545
+
"summary": "Query and product relevance prediction is a critical component for ensuring a smooth user experience in e-commerce search. Traditional studies mainly focus on BERT-based models to assess the semantic relevance between queries and products. However, the discriminative paradigm and limited knowledge capacity of these approaches restrict their ability to comprehend the relevance between queries and products fully. With the rapid advancement of Large Language Models (LLMs), recent research has begun to explore their application to industrial search systems, as LLMs provide extensive world knowledge and flexible optimization for reasoning processes. Nonetheless, directly leveraging LLMs for relevance prediction tasks introduces new challenges, including a high demand for data quality, the necessity for meticulous optimization of reasoning processes, and an optimistic bias that can result in over-recall. To overcome the above problems, this paper proposes a novel framework called the LLM-based RElevance Framework (LREF) aimed at enhancing e-commerce search relevance. The framework comprises three main stages: supervised fine-tuning (SFT) with Data Selection, Multiple Chain of Thought (Multi-CoT) tuning, and Direct Preference Optimization (DPO) for de-biasing. We evaluate the performance of the framework through a series of offline experiments on large-scale real-world datasets, as well as online A/B testing. The results indicate significant improvements in both offline and online metrics. Ultimately, the model was deployed in a well-known e-commerce application, yielding substantial commercial benefits.",
0 commit comments