You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: arxiv.json
+35Lines changed: 35 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -42978,5 +42978,40 @@
42978
42978
"pub_date": "2025-03-18",
42979
42979
"summary": "The ever growing realism and quality of generated videos makes it increasingly harder for humans to spot deepfake content, who need to rely more and more on automatic deepfake detectors. However, deepfake detectors are also prone to errors, and their decisions are not explainable, leaving humans vulnerable to deepfake-based fraud and misinformation. To this end, we introduce ExDDV, the first dataset and benchmark for Explainable Deepfake Detection in Video. ExDDV comprises around 5.4K real and deepfake videos that are manually annotated with text descriptions (to explain the artifacts) and clicks (to point out the artifacts). We evaluate a number of vision-language models on ExDDV, performing experiments with various fine-tuning and in-context learning strategies. Our results show that text and click supervision are both required to develop robust explainable models for deepfake videos, which are able to localize and describe the observed artifacts. Our novel dataset and code to reproduce the results are available at https://github.com/vladhondru25/ExDDV.",
"title": "When Pigs Get Sick: Multi-Agent AI for Swine Disease Detection",
42984
+
"url": "http://arxiv.org/abs/2503.15204v1",
42985
+
"pub_date": "2025-03-19",
42986
+
"summary": "Swine disease surveillance is critical to the sustainability of global agriculture, yet its effectiveness is frequently undermined by limited veterinary resources, delayed identification of cases, and variability in diagnostic accuracy. To overcome these barriers, we introduce a novel AI-powered, multi-agent diagnostic system that leverages Retrieval-Augmented Generation (RAG) to deliver timely, evidence-based disease detection and clinical guidance. By automatically classifying user inputs into either Knowledge Retrieval Queries or Symptom-Based Diagnostic Queries, the system ensures targeted information retrieval and facilitates precise diagnostic reasoning. An adaptive questioning protocol systematically collects relevant clinical signs, while a confidence-weighted decision fusion mechanism integrates multiple diagnostic hypotheses to generate robust disease predictions and treatment recommendations. Comprehensive evaluations encompassing query classification, disease diagnosis, and knowledge retrieval demonstrate that the system achieves high accuracy, rapid response times, and consistent reliability. By providing a scalable, AI-driven diagnostic framework, this approach enhances veterinary decision-making, advances sustainable livestock management practices, and contributes substantively to the realization of global food security.",
"title": "Optimizing Retrieval Strategies for Financial Question Answering\n Documents in Retrieval-Augmented Generation Systems",
42991
+
"url": "http://arxiv.org/abs/2503.15191v1",
42992
+
"pub_date": "2025-03-19",
42993
+
"summary": "Retrieval-Augmented Generation (RAG) has emerged as a promising framework to mitigate hallucinations in Large Language Models (LLMs), yet its overall performance is dependent on the underlying retrieval system. In the finance domain, documents such as 10-K reports pose distinct challenges due to domain-specific vocabulary and multi-hierarchical tabular data. In this work, we introduce an efficient, end-to-end RAG pipeline that enhances retrieval for financial documents through a three-phase approach: pre-retrieval, retrieval, and post-retrieval. In the pre-retrieval phase, various query and corpus preprocessing techniques are employed to enrich input data. During the retrieval phase, we fine-tuned state-of-the-art (SOTA) embedding models with domain-specific knowledge and implemented a hybrid retrieval strategy that combines dense and sparse representations. Finally, the post-retrieval phase leverages Direct Preference Optimization (DPO) training and document selection methods to further refine the results. Evaluations on seven financial question answering datasets-FinDER, FinQABench, FinanceBench, TATQA, FinQA, ConvFinQA, and MultiHiertt-demonstrate substantial improvements in retrieval performance, leading to more accurate and contextually appropriate generation. These findings highlight the critical role of tailored retrieval techniques in advancing the effectiveness of RAG systems for financial applications. A fully replicable pipeline is available on GitHub: https://github.com/seohyunwoo-0407/GAR.",
"title": "Pseudo-Relevance Feedback Can Improve Zero-Shot LLM-Based Dense\n Retrieval",
42998
+
"url": "http://arxiv.org/abs/2503.14887v1",
42999
+
"pub_date": "2025-03-19",
43000
+
"summary": "Pseudo-relevance feedback (PRF) refines queries by leveraging initially retrieved documents to improve retrieval effectiveness. In this paper, we investigate how large language models (LLMs) can facilitate PRF for zero-shot LLM-based dense retrieval, extending the recently proposed PromptReps method. Specifically, our approach uses LLMs to extract salient passage features-such as keywords and summaries-from top-ranked documents, which are then integrated into PromptReps to produce enhanced query representations. Experiments on passage retrieval benchmarks demonstrate that incorporating PRF significantly boosts retrieval performance. Notably, smaller rankers with PRF can match the effectiveness of larger rankers without PRF, highlighting PRF's potential to improve LLM-driven search while maintaining an efficient balance between effectiveness and resource usage.",
"title": "Scaled Supervision is an Implicit Lipschitz Regularizer",
43005
+
"url": "http://arxiv.org/abs/2503.14813v1",
43006
+
"pub_date": "2025-03-19",
43007
+
"summary": "In modern social media, recommender systems (RecSys) rely on the click-through rate (CTR) as the standard metric to evaluate user engagement. CTR prediction is traditionally framed as a binary classification task to predict whether a user will interact with a given item. However, this approach overlooks the complexity of real-world social modeling, where the user, item, and their interactive features change dynamically in fast-paced online environments. This dynamic nature often leads to model instability, reflected in overfitting short-term fluctuations rather than higher-level interactive patterns. While overfitting calls for more scaled and refined supervisions, current solutions often rely on binary labels that overly simplify fine-grained user preferences through the thresholding process, which significantly reduces the richness of the supervision. Therefore, we aim to alleviate the overfitting problem by increasing the supervision bandwidth in CTR training. Specifically, (i) theoretically, we formulate the impact of fine-grained preferences on model stability as a Lipschitz constrain; (ii) empirically, we discover that scaling the supervision bandwidth can act as an implicit Lipschitz regularizer, stably optimizing existing CTR models to achieve better generalizability. Extensive experiments show that this scaled supervision significantly and consistently improves the optimization process and the performance of existing CTR models, even without the need for additional hyperparameter tuning.",
"summary": "Knowledge graphs have emerged to be promising datastore candidates for context augmentation during Retrieval Augmented Generation (RAG). As a result, techniques in graph representation learning have been simultaneously explored alongside principal neural information retrieval approaches, such as two-phased retrieval, also known as re-ranking. While Graph Neural Networks (GNNs) have been proposed to demonstrate proficiency in graph learning for re-ranking, there are ongoing limitations in modeling and evaluating input graph structures for training and evaluation for passage and document ranking tasks. In this survey, we review emerging GNN-based ranking model architectures along with their corresponding graph representation construction methodologies. We conclude by providing recommendations on future research based on community-wide challenges and opportunities.",
0 commit comments