-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutils.py
335 lines (253 loc) · 10.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
'''
@Author: Gordon Lee
@Date: 2019-08-09 13:48:17
@LastEditors: Gordon Lee
@LastEditTime: 2019-08-16 16:29:07
@Description:
'''
import math
import torch
import torch.nn as nn
import numpy as np
from gensim.models import KeyedVectors as Vectors
class AverageMeter(object):
'''
跟踪指标的最新值,平均值,和,count
'''
def __init__(self):
self.reset()
def reset(self):
self.val = 0. #value
self.avg = 0. #average
self.sum = 0. #sum
self.count = 0 #count
def update(self, val, n=1):
self.val = val # 当前batch的val
self.sum += val * n # 从第一个batch到现在的累加值
self.count += n # 累加数目加1
self.avg = self.sum / self.count # 从第一个batch到现在的平均值
def init_embeddings(embeddings):
'''
使用均匀分布U(-bias, bias)来随机初始化
:param embeddings: 词向量矩阵
'''
bias = np.sqrt(3.0 / embeddings.size(1))
torch.nn.init.uniform_(embeddings, -bias, bias)
def load_embeddings(emb_file, emb_format, word_map):
'''
加载预训练词向量
:param emb_file: 词向量文件路径
:param emb_format: 词向量格式: 'glove' or 'word2vec'
:param word_map: 词表
:return: 词向量矩阵, 词向量维度
'''
assert emb_format in {'glove', 'word2vec'}
vocab = set(word_map.keys())
print("Loading embedding...")
cnt = 0 # 记录读入的词数
if emb_format == 'glove':
with open(emb_file, 'r', encoding='utf-8') as f:
emb_dim = len(f.readline().split(' ')) - 1
embeddings = torch.FloatTensor(len(vocab), emb_dim)
#初始化词向量(对OOV进行随机初始化,即对那些在词表上的词但不在预训练词向量中的词)
init_embeddings(embeddings)
# 读入词向量文件
for line in open(emb_file, 'r', encoding='utf-8'):
line = line.split(' ')
emb_word = line[0]
# 过滤空值并转为float型
embedding = list(map(lambda t: float(t), filter(lambda n: n and not n.isspace(), line[1:])))
# 如果不在词表上
if emb_word not in vocab:
continue
else:
cnt+=1
embeddings[word_map[emb_word]] = torch.FloatTensor(embedding)
print("Number of words read: ", cnt)
print("Number of OOV: ", len(vocab)-cnt)
return embeddings, emb_dim
else:
vectors = Vectors.load_word2vec_format(emb_file,binary=True)
print("Load successfully")
emb_dim = 300
embeddings = torch.FloatTensor(len(vocab), emb_dim)
#初始化词向量(对OOV进行随机初始化,即对那些在词表上的词但不在预训练词向量中的词)
init_embeddings(embeddings)
for emb_word in vocab:
if emb_word in vectors.index2word:
embedding = vectors[emb_word]
cnt += 1
embeddings[word_map[emb_word]] = torch.FloatTensor(embedding)
else:
continue
print("Number of words read: ", cnt)
print("Number of OOV: ", len(vocab)-cnt)
return embeddings, emb_dim
def clip_gradient(optimizer, grad_clip):
"""
梯度裁剪防止梯度爆炸
:param optimizer: 需要梯度裁剪的优化器
:param grad_clip: 裁剪阈值
"""
for group in optimizer.param_groups:
for param in group['params']:
if param.grad is not None:
# inplace操作,直接修改这个tensor,而不是返回新的
# 将梯度限制在(-grad_clip, grad_clip)间
param.grad.data.clamp_(-grad_clip, grad_clip)
def accuracy(logits, targets):
'''
计算单个batch的正确率
:param logits: (batch_size, class_num)
:param targets: (batch_size)
:return:
'''
corrects = (torch.max(logits, 1)[1].view(targets.size()).data == targets.data).sum()
return corrects.item() * (100.0 / targets.size(0))
def adjust_learning_rate(optimizer, current_epoch):
'''
学习率衰减
'''
frac = float(current_epoch - 20) / 50
shrink_factor = math.pow(0.5, frac)
print("DECAYING learning rate.")
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * shrink_factor
print("The new learning rate is {}".format(optimizer.param_groups[0]['lr']))
def save_checkpoint(model_name, data_name, epoch, epochs_since_improvement, model, optimizer, acc, is_best):
'''
保存模型
:param model_name: model name
:param data_name: SST-1 or SST-2,
:param epoch: epoch number
:param epochs_since_improvement: 自上次提升正确率后经过的epoch数
:param model: model
:param optimizer: optimizer
:param acc: 每个epoch的验证集上的acc
:param is_best: 该模型参数是否是目前最优的
'''
state = {'epoch': epoch,
'epochs_since_improvement': epochs_since_improvement,
'acc': acc,
'model': model,
'optimizer': optimizer}
filename = 'checkpoint_' + data_name + '_' + model_name + '.pth'
torch.save(state, 'checkpoints/' + filename)
# 如果目前的checkpoint是最优的,添加备份以防被重写
if is_best:
torch.save(state, 'checkpoints/' + 'BEST_' + filename)
def train(train_loader, model, criterion, optimizer, epoch, vocab_size, print_freq, device, grad_clip=None):
'''
执行一个epoch的训练
:param train_loader: DataLoader
:param model: model
:param criterion: 交叉熵loss
:param optimizer: optimizer
:param epoch: 执行到第几个epoch
:param vocab_size: 词表大小
:param print_freq: 打印频率
:param device: device
:param grad_clip: 梯度裁剪阈值
'''
# 切换模式(使用dropout)
model.train()
losses = AverageMeter() # 一个batch的平均loss
accs = AverageMeter() # 一个batch的平均正确率
for i, (sents, labels) in enumerate(train_loader):
# 移动到GPU
sents = sents.to(device)
targets = labels.to(device)
# 前向计算
logits = model(sents)
# 计算整个batch上的平均loss
loss = criterion(logits, targets)
# 反向传播
optimizer.zero_grad()
loss.backward()
# 梯度裁剪
if grad_clip is not None:
clip_gradient(optimizer, grad_clip)
# 更新参数
optimizer.step()
# 计算准确率
accs.update(accuracy(logits, targets))
losses.update(loss.item())
# 打印状态
if i % print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format(epoch, i, len(train_loader),
loss=losses,
acc=accs))
def validate(val_loader, model, criterion, print_freq, device):
'''
执行一个epoch的验证(跑完整个验证集)
:param val_loader: 验证集的DataLoader
:param model: model
:param criterion: 交叉熵loss
:param print_freq: 打印频率
:param device: device
:return: accuracy
'''
#切换模式
model = model.eval()
losses = AverageMeter() # 一个batch的平均loss
accs = AverageMeter() # 一个batch的平均正确率
# 设置不计算梯度
with torch.no_grad():
# 迭代每个batch
for i, (sents, labels) in enumerate(val_loader):
# 移动到GPU
sents = sents.to(device)
targets = labels.to(device)
# 前向计算
logits = model(sents)
# 计算整个batch上的平均loss
loss = criterion(logits, targets)
# 计算准确率
accs.update(accuracy(logits, targets))
losses.update(loss.item())
if i % print_freq == 0:
print('Validation: [{0}/{1}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuracy {acc.val:.3f} ({acc.avg:.3f})\t'.format(i, len(val_loader),
loss=losses, acc=accs))
# 计算整个验证集上的正确率
print('LOSS - {loss.avg:.3f}, ACCURACY - {acc.avg:.3f}\n'.format(loss=losses, acc=accs))
return accs.avg
def testing(test_loader, model, criterion, print_freq, device):
'''
执行测试
:param test_loader: 测试集的DataLoader
:param model: model
:param criterion: 交叉熵loss
:param print_freq: 打印频率
:param device: device
:return: accuracy
'''
#切换模式
model = model.eval()
losses = AverageMeter() # 一个batch的平均loss
accs = AverageMeter() # 一个batch的平均正确率
# 设置不计算梯度
with torch.no_grad():
# 迭代每个batch
for i, (sents, labels) in enumerate(test_loader):
# 移动到GPU
sents = sents.to(device)
targets = labels.to(device)
# 前向计算
logits = model(sents)
# 计算整个batch上的平均loss
loss = criterion(logits, targets)
# 计算准确率
accs.update(accuracy(logits, targets))
losses.update(loss.item())
if i % print_freq == 0:
print('Test: [{0}/{1}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuracy {acc.val:.3f} ({acc.avg:.3f})\t'.format(i, len(test_loader),
loss=losses, acc=accs))
# 计算整个测试集上的正确率
print('LOSS - {loss.avg:.3f}, ACCURACY - {acc.avg:.3f}'.format(loss=losses, acc=accs))
return accs.avg