-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParameters.m
139 lines (118 loc) · 7.73 KB
/
Parameters.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
function Parameter_Values = Parameters(Switches,m_thorax,v_bee)
%m_thorax is mass if varying, unused if not varying mass
%v_bee = 1,2,3 is min,default,max flight speed
%%%%%%%%%%% Model Switches %%%%%%%%%%%%%%%%
Bumblebee = Switches(1); %only one of Bumblebee and Honeybee can be true
Honeybee = Switches(2);
CoolingOff = Switches(3); %any combination of cooling can be true
CoolingSwitch = Switches(4);
CoolingOn = Switches(5);
Resting = Switches(6); %any combination of metabolic states can be true
Shivering = Switches(7);
Flying = Switches(8);
VaryMass = Switches(9); %only true if varying mass
%%%%%% Constant values %%%%%%%%
k = 8.617333262145*10^(-5); %Bolzmann's constant
delta = 5.31*10^(-13); %fill in the name of this constant
sigma = 5.67*10^(-8); %fill in the name of this constant
h_fg = 2.3819*10^6; %latent heat of vaporization of water at 50C, J/kg (it actually depends on temp)
%https://www.engineeringtoolbox.com/water-properties-d_1573.html
A = 9.1496*10^10; %clausius-clapyron constant A for water in N/m^2
B = -5.1152*10^3; %clausius-clapyron constant B for water in K
rh = 0.6908; %mean relative humidity from Arrian's data
%D_A = 2.06*10^-5; %diffusion coefficient of air into itself in m^2/s - %calculated version is below
MM_air = 0.0289652; %molar mass of dry air in kg/mol
%https://www.engineeringtoolbox.com/molecular-mass-air-d_679.html
MM_vapor = 0.018016; %molar mass of water vapor in kg/mol
%%%%%%%%%%% Environmental Parameters %%%%%%%%%%%%%%%%
P = 332.3878; %mean solar irradiance from all of Arrian's data
T_gC = 17.1; %ground surface temp in C https://www.met.ie/climate/available-data/monthly-data %Phoenix Park June 2021
T_gK = T_gC+273.15; %ground surface temp in K, very vague estimate from https://www.met.ie/forecasts/farming/agricultural-data-report
Pr = 1.013*10^5; %atmospheric pressure in N/m^2 (value used in Sidebotham)
R_specific = 287.058; %J/kg/K for dry air
a = 0.25; %fraction of solar radiation from sun reflected back by earth (albedo) (Cooper1985)
%%%%%%%%%%% Bee Parameters same for BB and HB %%%%%%%%%%%%%%%%
s = 0.9965; %ratio calculated from Church1960 data converted to K
c = 3.349; %specific heat (0.8 cal/g*degC converted to J/g*degC *4.1868), cited in May1976
C_l = 2.429809*10^(-7); %fitted from log(Nu) = log(Re), or Nu = C_le^n with CChurch1960 data
n = 1.975485; %%fitted from log(Nu) = log(Re), or Nu = C_le^n with CChurch1960 data
delta_T_h = 2.9;
alpha_si = 0.25; %shape factor for incoming solar radiation (Cooper1985)
alpha_so = 0.5; %fraction of surface of bee that is irradiated with outgoing solar radiation (Cooper1985)
alpha_th = 0.5; %fraction of surface of bee that is irradiated with thermal radiation (Cooper1985)
maxy=70+273.15; %don't solve above 60C because it's not biologically relevant
r = 0.0367/9; %Calculated from Heinrich1976, 2.2 J/min at T_th-T_abdomen = 9C
R_0 = 0.000616/2; %radius of nectar droplet, half avg width of tongue, in m, so drop is width of tongue
if Bumblebee==true
%%%%%%%%%%%%%%% Bee Parameters %%%%%%%%%%%%%%%
if VaryMass==true %adjust the body size proportionally
M_th_default = 0.057; %mass of thorax in g, Joos1991
M_b_default = 0.149; %mass of the bee in g, Joos1991, default
scale_m = m_thorax/M_th_default; %how much scaling body mass by
l_th = 0.005467*(scale_m^(1/3)); %characteristic dimension of thorax in m (avg thorax diam, from Mitchell1976/Church1960)
A_th = 4*pi*(l_th/2)^2 ; %thorax surface area in m^2, from Church1960
A_h = 3.61375*10^(-5)*scale_m^(2/3) ; %head surface area in m^2, own data
M_th = m_thorax; %mass of thorax in g, Joos1991
M_b = M_b_default*scale_m; %mass of the bee in g, Joos1991, default
end
if VaryMass==false %use all the defaults
A_th = 9.3896*10^(-5) ; %thorax surface area in m^2, from Church1960
A_h = 3.61375*10^(-5) ; %head surface area in m^2, own data
M_b = 0.149; %mass of the bee in g, Joos1991, default
M_th = 0.057; %mass of thorax in g, Joos1991
l_th = 0.005467; %characteristic dimension of thorax in m (avg thorax diam, from Mitchell1976/Church1960)
end
epsilon_a = 0.935; % absorptivity of bees (Willmer1981, ,te)
flying_vs = [1, 4.5, 5.5];
v_options = [0 0.1 flying_vs(v_bee)]; %make the bee be out of wind when resting/shivering, default
epsilon_e = 0.97; %(fill in the reference for this!)
T_mK = 42+273.15; %median temp for abdomen cooling
I_resting = 0.001349728; %Kammer1974, table 1, for 25C, converted to W
I_flying = 0.06404973; %fitted
masses = [0.177 0.177 0.177]; %reference weight for Kammer (flying)
RefTemps = [25+273.15, 25+273.15, 25+273.15]; %Reference temp is 25C for Kammer (resting & flying)
norm_constants = [I_resting, I_flying, I_flying]; %resting/shivering/flying = 1,2,3
E_opts = [0.63 0.63 0.0065]; %fitted values
y0 = 30+273.15; %initial temperature of the bee's thorax in K
LethalTemp = 45; %lethal thorax/air temp in C
CoolingTemp = 42; %thorax temp where cooling begins
FlyingTemp = 30; %thorax temp where flight can begin
end
if Honeybee==true
if VaryMass==true %adjust the other body sizes proportionally
M_th_default = 0.0407; %mass of thorax in g, Joos1991
M_b_default = 0.100; %mass of the bee in g, Joos1991
scale_m = m_thorax/M_th_default; %how much scaling body mass by
M_th = m_thorax;
M_b = M_b_default*scale_m; %mass of the bee in g, Joos1991, default
l_th = 0.004*(scale_m^(1/3)); %characteristic dimension of thorax in m (avg thorax diam, from Mitchell1976/Church1960)
A_th = 4*pi*(l_th/2)^2 ; %thorax surface area in m^2, from Cooper1985
A_h = 2.46*10^(-5)*scale_m^(2/3) ; %head surface area in m^2, from Cooper1985
end
if VaryMass==false %use all the defaults
l_th = 0.004; %characteristic dimension of thorax in m (avg thorax diam, from Mitchell1976/Church1960)
A_th = 4.5*10^(-5) ; %thorax surface area in m^2, from ???
A_h = 2.46*10^(-5) ; %head surface area in m^2, from Cooper1985
M_b = 0.100; %mass of the bee in g, Joos1991
M_th = 0.0407; %mass of thorax in g, Joos1991
end
epsilon_a = 0.91; % absorptivity of bees (Willmer1981, ,te)
flying_vs = [3.6, 4.5, 9];
v_options = [0 0.1 flying_vs(v_bee)]; %make the bee be out of wind when resting/shivering, default
epsilon_e = 0.97; %(fill in the reference for this!)
T_mK = 47.9+273.15; %median temp for evaporative cooling
I_resting = 5.65*(80/1000)*(1/1000); %Rothe1989, mW/g -> W, 80mg reference mass
I_flying = 0.0332395; %%fitted value
masses = [0.08 0.08 0.08]; %reference weight for Rothe/Nachtigal (flying)
RefTemps = [25+273.15, 25+273.15, 25+273.15]; %Reference temp
norm_constants = [I_resting, I_flying, I_flying]; %resting/shivering/flying = 1,2,3
E_opts = [0.63 0.01191667 0.01191667]; %fitted values
y0 = 39+273.15; %initial temperature of the bee's thorax in K (fill in ref)
LethalTemp = 52; %lethal thorax/air temp in C
CoolingTemp = 47.9; %thorax temp where cooling begins
FlyingTemp = 35; %thorax temp where flight can begin
end
Parameter_Values = [k, delta, sigma, h_fg, A, B, rh, MM_air, MM_vapor,...
P, T_gC, T_gK, Pr, R_specific, a,...
s, c, C_l, n, delta_T_h, alpha_si, alpha_so, alpha_th, maxy, r, R_0,...
A_th,A_h,M_b,M_th,l_th,epsilon_a,v_options,epsilon_e,T_mK,I_resting,I_flying,masses,RefTemps,norm_constants,E_opts,y0,LethalTemp,CoolingTemp,FlyingTemp];