-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVariabilityDueToParameters.R
406 lines (311 loc) · 11.4 KB
/
VariabilityDueToParameters.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
library(lhs)
setwd("~/SUSPOLL/Code")
# date = "SensitivityAnalysis" #fill in with today's date (year_month_day) and create this folder in Data Files
n_samples = 10000
k_length = 30
Bumblebee = TRUE #only one of Bumblebee and Honeybee can be true
Honeybee = FALSE
Param_values = matrix(NA, nrow=n_samples,ncol=k_length)
## Take the latin hypercube sample - n samples from k parameters
LHS_sample = randomLHS(n_samples,k_length)
##set the parameter ranges/distributions
# Matches to Table 2: Variability in all input/parameter values based on field measurements or experiments.
####### these ones are for both
#5
E = 0.63
# E_min = 0.6 #default
E_min = 0 #combined
E_max = 0.7
#7
c = 3.349
c_min = 0.9*c
c_max = 1.1*c
#10
alpha_si = 0.25
alpha_si_min = 0.9*alpha_si #unknown, so do +- 10%
alpha_si_max = 1.1*alpha_si
#14
alpha_so = 0.5
alpha_so_min = 0.9*alpha_so #unknown, so do +- 10%
alpha_so_max = 1.1*alpha_so
#15
alpha_th = 0.5
alpha_th_min = 0.9*alpha_th #unknown, so do +- 10%
alpha_th_max = 1.1*alpha_th
#16
f = 0.25 #ground reflectance/albedo
f_min = 0.17
f_max = 0.32
#17
P=332.3878
P_min = 29.87
P_max = 1041
#18
T_g = 17.1
T_g_min = 3.1
T_g_max = 19.6
#19
T_air_min = 0
T_air_max = 50
####### these ones are BB only, but included for requirement in matlab code
#8
r = 0.0367/9
r_min = 0.002
r_max = 0.008
####### these ones are HB only, but included for requirement in matlab code
#27
R_0 = 0.001 #radius of nectar drop 1mm
R_0_min = 0.00025 #1/4mm
R_0_max = 0.002 #2mm
#28
D_A = 2.06*10^-5
D_A_min = 0.5*D_A
D_A_max = 3*D_A
#29
h_fg = 2.33*10^6
h_fg_min = 0.9*h_fg
h_fg_max = 1.1*h_fg
#30
rh = 0.6908 #mean relative humidity from Arrian's data
rh_min = 0.3920
rh_max = 0.9349
if(Honeybee==TRUE){
#1
delta_T_h = 2.9
delta_T_h_min = 1.6
delta_T_h_max = 4.2
#metabolic rates
#2
i0_resting = 4.52*10^(-4)
i0_resting_min = 0.9*i0_resting
i0_resting_max = 1.1*i0_resting
#3
#combined i0 range
i0_flying = 3.20*10^(-2)
i0_flying_min = 4.52*10^(-4)
i0_flying_max = 1.5*i0_flying
#4
M_b = 0.100
M_b_min = 0.100-2*0.0202 #plus/minus 2 standard deviations
M_b_max = 0.100+2*0.0202
#6
M_th = 0.0407
M_th_min = M_th-2*0.0029 #plus/minus 2 standard deviations
M_th_max = M_th+2*0.0029
#9
T_mK = (45+delta_T_h)+273.15 #set point in head is 44-46C, so thorax is 44+delta_T_h
T_mK_min = (44+delta_T_h)+273.15
T_mK_max = (46+delta_T_h)+273.15
#11
epsilon_a = 0.91
epsilon_a_min = 0.90 #given range
epsilon_a_max = 0.92
#12
A_th = 4.5*10^(-5)
A_th_min = A_th-2*(0.29*10^(-5))
A_th_max = A_th+2*(0.29*10^(-5))
#13
A_h = 2.46*10^(-5)
A_h_mean = A_h
A_h_sd = 0.43*10^(-5)
#20
epsilon_e = 0.97
epsilon_e_min = 0.955
epsilon_e_max = 0.99
#21
s = 0.9965 #in K it's this; in C, s = 0.9
s_min = 0.99 #so that it's only a few degrees different at most
s_max = 1 #can't be greater than 1 or surface is warmer!
#22
C_l = 2.429809*10^(-7)
C_l_min = 2.301936*10^(-7) #+-1sd from Coefficient Estimation.R
C_l_max = 2.564785*10^(-7)
#23
n = 1.975485
n_mean = 1.975485 #from model fit
n_sd = 0.007548
#24
l_th = 0.004
l_th_min = 0.9*l_th #
l_th_max = 1.1*l_th
#25
v = 5.6
v_sd = 1
v_min = v-2*v_sd # flight speeds
v_max = 7+2*v_sd
#note: v ranges should be different for resting vs. flying - wind speed vs. flight speed
#26
T_0 = 39
T_0_min = 38
T_0_max = 40
}
if(Bumblebee==TRUE){
#1
delta_T_h = 2.9
delta_T_h_min = 1.6
delta_T_h_max = 4.2
#metabolic rates
#Heinrich - overall body weight for queens 0.25-0.6g midpoint = 0.4125
# i0_resting = 21.117*1.3*(1/60)*(1/60)*0.177 #Kammer1974 - bdy wt
# i0_resting_min = 21.117*0.3*(1/60)*(1/60)*0.06 #Kammer1974 - thx wt, extracted from fig 1 with imageJ
# i0_resting_max = 21.117*23.4*(1/60)*(1/60)*0.06 #Kammer1974 - thx wt, extracted from fig 1 with imageJ
#
# i0_flying_Heinrich_1 = 21.117*(76.6)*(1/60)*(1/60)*0.4125 #Heinrich1975 - bdy wt
# i0_flying_Heinrich_2 = 21.117*((150+350)/2)*(1/60)*(1/60)*0.143 #Heinrich1975 - thx wt
# i0_flying_Kammer = 21.117*((166+188)/2)*(1/60)*(1/60)*0.06 #Kammer1974 - thx wt
# i0_flying_min_Heinrich_1 = 21.117*(47.2)*(1/60)*(1/60)*0.4125 #- bdy wt
# i0_flying_max_Heinrich_1 = 21.117*(106.7)*(1/60)*(1/60)*0.4125 #- bdy wt
# i0_flying_min_Heinrich_2 = 21.117*(150)*(1/60)*(1/60)*0.143 #- thx wt
# i0_flying_max_Heinrich_2 = 21.117*(350)*(1/60)*(1/60)*0.143 #- thx wt
# i0_flying_min_Kammer = 21.117*166*(1/60)*(1/60)*0.06 #- thx wt
# i0_flying_max_Kammer = 21.117*188*(1/60)*(1/60)*0.06 #- thx wt
#2
i0_resting = 0.001349728
i0_resting_min = 0.00011
i0_resting_max = 0.0082356
#3
#default i0 range
# i0_flying = 0.06229515
# i0_flying_min = 0.0584237
# i0_flying_max = 0.0661666
#low i0 range
# i0_flying = 0.025
# i0_flying_min = 0.001349728
# i0_flying_max = 0.05
#combined i0 range
i0_flying_min = 0.001349728
i0_flying_max = 0.0661666
#4
M_b = 0.149
M_b_min = 0.035
M_b_max = 0.351
#6
M_th = 0.057
M_th_min = 0.014
M_th_max = 0.132
#8
r = 0.0367/9
r_min = 0.002
r_max = 0.008
#9
T_mK = 42+273.15
T_mK_min = 40+273.15
T_mK_max = 44+273.15
#11
epsilon_a = 0.935
epsilon_a_min = 0.92 #given range
epsilon_a_max = 0.95
#12
A_th = 9.218*10^(-5)
A_th_min = 8.8247*10^(-5)
A_th_max = 10.5683*10^(-5)
#13
A_h = 2.46*10^(-5) #this is the HB value
A_h_mean = A_h
A_h_sd = 0.43*10^(-5)
#20
epsilon_e = 0.97
epsilon_e_min = 0.955
epsilon_e_max = 0.99
#21
s = 0.9965 #in K it's this; in C, s = 0.9
s_min = 0.99 #so that it's only a few degrees different at most
s_max = 1 #can't be greater than 1 or surface is warmer!
#22
C_l = 2.429809*10^(-7)
C_l_min = 2.301936*10^(-7) #+-1sd from Coefficient Estimation.R
C_l_max = 2.564785*10^(-7)
#23
n = 1.975485
n_mean = 1.975485 #from model fit
n_sd = 0.007548
#24
l_th = 0.005467
l_th_min = 0.0053 #range of workers in Church1960
l_th_max = 0.0058
#25
v = 4.1
v_min = 1 # flight speeds
v_max = 5.5
#note: v ranges should be different for resting vs. flying - wind speed vs. flight speed
#26
T_0 = 30
T_0_min = 20
T_0_max = 39
}
## Use the latin hypercube sample to get the parameter values from the ranges
for(i in 1:n_samples){ #for each sample
Param_values[i,1] = qunif(LHS_sample[i,1],min=delta_T_h_min,max=delta_T_h_max)
Param_values[i,2] = qunif(LHS_sample[i,2],min=i0_resting_min,max=i0_resting_max)
Param_values[i,3] = qunif(LHS_sample[i,3],min=i0_flying_min,max=i0_flying_max)
Param_values[i,4] = qunif(LHS_sample[i,4],min=M_b_min,max=M_b_max)
Param_values[i,6] = qunif(LHS_sample[i,6],min=M_th_min,max=M_th_max)
Param_values[i,5] = qunif(LHS_sample[i,5],min=E_min,max=E_max)
Param_values[i,7] = qunif(LHS_sample[i,7],min=c_min,max=c_max)
Param_values[i,8] = qunif(LHS_sample[i,8],min=r_min,max=r_max)
Param_values[i,9] = qunif(LHS_sample[i,9],min=T_mK_min,max=T_mK_max)
Param_values[i,10] = qunif(LHS_sample[i,10],min=alpha_si_min,max=alpha_si_max)
Param_values[i,11] = qunif(LHS_sample[i,11],min=epsilon_a_min,max=epsilon_a_max)
Param_values[i,12] = qunif(LHS_sample[i,12],min=A_th_min,max=A_th_max)
Param_values[i,13] = qnorm(LHS_sample[i,13],mean=A_h_mean,sd=A_h_sd)
Param_values[i,14] = qunif(LHS_sample[i,14],min=alpha_so_min,max=alpha_so_max)
Param_values[i,15] = qunif(LHS_sample[i,15],min=alpha_th_min,max=alpha_th_max)
Param_values[i,16] = qunif(LHS_sample[i,16],min=f_min,max=f_max)
Param_values[i,17] = qunif(LHS_sample[i,17],min=P_min,max=P_max)
Param_values[i,18] = qunif(LHS_sample[i,18],min=T_g_min,max=T_g_max)
Param_values[i,19] = qunif(LHS_sample[i,19],min=T_air_min,max=T_air_max)
Param_values[i,20] = qunif(LHS_sample[i,20],min=epsilon_e_min,max=epsilon_e_max)
Param_values[i,21] = qunif(LHS_sample[i,21],min=s_min,max=s_max)
Param_values[i,22] = qunif(LHS_sample[i,22],min=C_l_min,max=C_l_max)
Param_values[i,23] = qnorm(LHS_sample[i,23],mean=n_mean,sd=n_sd)
Param_values[i,24] = qunif(LHS_sample[i,24],min=l_th_min,max=l_th_max)
Param_values[i,25] = qunif(LHS_sample[i,25],min=v_min,max=v_max)
Param_values[i,26] = qunif(LHS_sample[i,26],min=T_0_min,max=T_0_max)
Param_values[i,27] = qunif(LHS_sample[i,27],min=R_0_min,max=R_0_max)
Param_values[i,28] = qunif(LHS_sample[i,28],min=D_A_min,max=D_A_max)
Param_values[i,29] = qunif(LHS_sample[i,29],min=h_fg_min,max=h_fg_max)
Param_values[i,30] = qunif(LHS_sample[i,30],min=rh_min,max=rh_max)
#note, possibly make so resting and flying samples are the same except for i_0 and v
}
if(Honeybee==TRUE){
write.csv(Param_values,file="ParameterSample_10000_combined_HB.csv")
}
if(Bumblebee==TRUE){
write.csv(Param_values,file="ParameterSample_10000_combined_BB.csv")
}
####################################################################################
################ Now do the environmental variables ################################
ArrianDataSet = read.csv('HiveActivityWeatherdataset.csv',header=TRUE)
n_samples = 1000
#1
P = mean(ArrianDataSet$meansolarstation) #solar radiations observed by Arrian = a good range of typical Irish weather
P_min = min(ArrianDataSet$meansolarstation)
P_max = max(ArrianDataSet$meansolarstation)
#2
T_aK = mean(ArrianDataSet$thermtemp)+273.15 #0-50C should cover it
T_aK_min = 0+273.15
T_aK_max = 50+273.15
#3
T_gK = 11+273.15 #from https://www.met.ie/forecasts/farming/agricultural-data-report May 25 2021
T_gK_min = 6+273.15 #https://www.farmersjournal.ie/soil-temperature-rise-to-help-growth-151968, https://www.farmersjournal.ie/dairy-management-return-to-winter-weather-612799
T_gK_max = 15+273.15 #http://edepositireland.ie/bitstream/handle/2262/71180/Agromet%20Memo%20No.%203.pdf?sequence=1&isAllowed=y
#4
rh = mean(ArrianDataSet$meanrhstation) #relative humidity
rh_min = min(ArrianDataSet$meanrhstation)
rh_max = max(ArrianDataSet$meanrhstation)
#5
a = 0.25
a_min = 0.9*a #unknown, so do +- 10%
a_max = 1.1*a
k_length = 5
LHS_sample = randomLHS(n_samples,k_length)
## Use the latin hypercube sample to get the parameter values from the ranges
Envir_values = matrix(NA, nrow=n_samples,ncol=k_length)
for(i in 1:n_samples){ #for each sample
Envir_values[i,1] = qunif(LHS_sample[i,1],min=P_min,max=P_max)
Envir_values[i,2] = qunif(LHS_sample[i,2],min=T_aK_min,max=T_aK_max)
Envir_values[i,3] = qunif(LHS_sample[i,3],min=T_gK_min,max=T_gK_max)
Envir_values[i,4] = qunif(LHS_sample[i,4],min=rh_min,max=rh_max)
Envir_values[i,5] = qunif(LHS_sample[i,5],min=a_min,max=a_max)
}
write.csv(Envir_values,file="ParameterSample_Enviro_1000.csv")