-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathp1b2_classification_net.py
95 lines (72 loc) · 3.73 KB
/
p1b2_classification_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
import torch.nn as nn
import numpy as np
from pytorch_utils import build_activation
from torch_deps.weight_init import basic_weight_init, basic_weight_init_he_normal_relu, basic_weight_init_he_uniform_relu, basic_weight_init_glorut_uniform
class P1B2Net(nn.Module):
def __init__(self,
layers: list,
activation: str,
out_activation: str,
dropout: int,
classes: int,
input_dim: int,
):
super(P1B2Net, self).__init__()
self.__p1b2_net = nn.Sequential()
module_index = 0
prev_dim = list(input_dim)
# Define MLP architecture
if layers is not None:
if type(layers) != list:
layers = list(layers)
for i, layer in enumerate(layers):
if i == 0:
#model.add(Dense(layer, input_shape=(x_train_len, 1)))
self.__p1b2_net.add_module('dense_%d' % module_index,
nn.Linear(prev_dim[0], layer, True))
prev_dim[0] = layer
else:
self.__p1b2_net.add_module('dense_%d' % module_index,
nn.Linear(prev_dim[0], layer, True))
prev_dim[0] = layer
self.__p1b2_net.add_module('activation_%d' % module_index,
build_activation(activation))
if dropout:
#x = Dropout(gParameters['dropout'])(x)
self.__p1b2_net.add_module('dropout_%d' % module_index,
nn.Dropout(p=dropout))
module_index += 1
#output = Dense(output_dim, activation=activation,
# kernel_initializer=initializer_weights,
# bias_initializer=initializer_bias)(x)
#model.add(Dense(gParameters['classes']))
self.__p1b2_net.add_module('dense_%d' % module_index,
nn.Linear(prev_dim[0], classes))
prev_dim[0] = classes
module_index += 1
#model.add(Activation(gParameters['out_activation']))
self.__p1b2_net.add_module('activation_%d' % module_index,
build_activation(out_activation, dim=1))
else:
#output = Dense(output_dim, activation=activation,
# kernel_initializer=initializer_weights,
# bias_initializer=initializer_bias)(input_vector)
self.__p1b2_net.add_module('dense_%d' % module_index,
nn.Linear(prev_dim[0], classes))
prev_dim[0] = classes
module_index += 1
#model.add(Activation(gParameters['out_activation']))
self.__p1b2_net.add_module('activation_%d' % module_index,
build_activation(out_activation, dim=1))
#kernel_initializer=initializer_weights,
# bias_initializer=initializer_bias,
# kernel_regularizer=l2(gParameters['reg_l2']),
# activity_regularizer=l2(gParameters['reg_l2']
# Weight Initialization ###############################################
if activation == 'relu':
self.__p1b2_net.apply(basic_weight_init_he_uniform_relu)
else:
self.__p1b2_net.apply(basic_weight_init_glorut_uniform)
def forward(self, x):
return self.__p1b2_net(x)