8
8
import tensorflow as tf
9
9
10
10
from tensorflow .keras import backend as K
11
- from tensorflow .keras .models import model_from_json , model_from_yaml
11
+ from tensorflow .keras .models import model_from_json
12
12
from tensorflow .keras .callbacks import ModelCheckpoint , CSVLogger , ReduceLROnPlateau , EarlyStopping , TensorBoard
13
13
14
14
from sklearn .utils .class_weight import compute_class_weight
@@ -214,7 +214,7 @@ def run(params):
214
214
215
215
# Try class weight and abstention classifier
216
216
y_integers = np .argmax (Y_train , axis = 1 )
217
- class_weights = compute_class_weight ('balanced' , np .unique (y_integers ), y_integers )
217
+ class_weights = compute_class_weight (class_weight = 'balanced' , classes = np .unique (y_integers ), y = y_integers )
218
218
d_class_weights = dict (enumerate (class_weights ))
219
219
220
220
print ('X_train shape:' , X_train .shape )
@@ -444,12 +444,6 @@ def save_and_test_saved_model(params, model, root_fname, nb_classes, alpha, mask
444
444
with open (params ['save_path' ] + root_fname + '.model.json' , "w" ) as json_file :
445
445
json_file .write (model_json )
446
446
447
- # serialize model to YAML
448
- model_yaml = model .to_yaml ()
449
- with open (params ['save_path' ] + root_fname + '.model.yaml' , "w" ) as yaml_file :
450
-
451
- yaml_file .write (model_yaml )
452
-
453
447
# serialize weights to HDF5
454
448
model .save_weights (params ['save_path' ] + root_fname + '.model.h5' )
455
449
print ("Saved model to disk" )
@@ -460,18 +454,8 @@ def save_and_test_saved_model(params, model, root_fname, nb_classes, alpha, mask
460
454
json_file .close ()
461
455
loaded_model_json = model_from_json (loaded_model_json )
462
456
463
- # load yaml and create model
464
- yaml_file = open (params ['save_path' ] + root_fname + '.model.yaml' , 'r' )
465
- loaded_model_yaml = yaml_file .read ()
466
- yaml_file .close ()
467
- loaded_model_yaml = model_from_yaml (loaded_model_yaml )
468
- # yaml.load(input, Loader=yaml.FullLoader)
469
-
470
457
# load weights into new model
471
458
loaded_model_json .load_weights (params ['save_path' ] + root_fname + '.model.h5' )
472
- # input = params['save_path'] + root_fname + '.model.h5'
473
- # loaded_model_json.load(input, Loader=yaml.FullLoader)
474
- # print("Loaded json model from disk")
475
459
476
460
# evaluate json loaded model on test data
477
461
loaded_model_json .compile (loss = candle .abstention_loss (alpha , mask ), optimizer = 'SGD' , metrics = [candle .abstention_acc_metric (nb_classes )])
@@ -480,27 +464,17 @@ def save_and_test_saved_model(params, model, root_fname, nb_classes, alpha, mask
480
464
print ('json Validation abstention accuracy:' , score_json [1 ])
481
465
print ("json %s: %.2f%%" % (loaded_model_json .metrics_names [1 ], score_json [1 ] * 100 ))
482
466
483
- # load weights into new model
484
- loaded_model_yaml .load_weights (params ['save_path' ] + root_fname + '.model.h5' )
485
- print ("Loaded yaml model from disk" )
486
- # evaluate yaml loaded model on test data
487
- loaded_model_yaml .compile (loss = candle .abstention_loss (alpha , mask ), optimizer = 'SGD' , metrics = [candle .abstention_acc_metric (nb_classes )])
488
- score_yaml = loaded_model_yaml .evaluate (X_test , Y_test , verbose = 0 )
489
- print ('yaml Validation abstention loss:' , score_yaml [0 ])
490
- print ('yaml Validation abstention accuracy:' , score_yaml [1 ])
491
- print ("yaml %s: %.2f%%" % (loaded_model_yaml .metrics_names [1 ], score_yaml [1 ] * 100 ))
492
-
493
467
# predict using loaded yaml model on test and training data
494
- predict_yaml_train = loaded_model_yaml .predict (X_train )
495
- predict_yaml_test = loaded_model_yaml .predict (X_test )
496
- print ('Yaml_train_shape :' , predict_yaml_train .shape )
497
- print ('Yaml_test_shape :' , predict_yaml_test .shape )
498
- predict_yaml_train_classes = np .argmax (predict_yaml_train , axis = 1 )
499
- predict_yaml_test_classes = np .argmax (predict_yaml_test , axis = 1 )
500
- np .savetxt (params ['save_path' ] + root_fname + '_predict_yaml_train .csv' , predict_yaml_train , delimiter = "," , fmt = "%.3f" )
501
- np .savetxt (params ['save_path' ] + root_fname + '_predict_yaml_test .csv' , predict_yaml_test , delimiter = "," , fmt = "%.3f" )
502
- np .savetxt (params ['save_path' ] + root_fname + '_predict_yaml_train_classes .csv' , predict_yaml_train_classes , delimiter = "," , fmt = "%d" )
503
- np .savetxt (params ['save_path' ] + root_fname + '_predict_yaml_test_classes .csv' , predict_yaml_test_classes , delimiter = "," , fmt = "%d" )
468
+ predict_train = loaded_model_json .predict (X_train )
469
+ predict_test = loaded_model_json .predict (X_test )
470
+ print ('train_shape :' , predict_train .shape )
471
+ print ('test_shape :' , predict_test .shape )
472
+ predict_train_classes = np .argmax (predict_train , axis = 1 )
473
+ predict_test_classes = np .argmax (predict_test , axis = 1 )
474
+ np .savetxt (params ['save_path' ] + root_fname + '_predict_train .csv' , predict_train , delimiter = "," , fmt = "%.3f" )
475
+ np .savetxt (params ['save_path' ] + root_fname + '_predict_test .csv' , predict_test , delimiter = "," , fmt = "%.3f" )
476
+ np .savetxt (params ['save_path' ] + root_fname + '_predict_train_classes .csv' , predict_train_classes , delimiter = "," , fmt = "%d" )
477
+ np .savetxt (params ['save_path' ] + root_fname + '_predict_test_classes .csv' , predict_test_classes , delimiter = "," , fmt = "%d" )
504
478
505
479
506
480
def main ():
0 commit comments