Skip to content

Commit e62e752

Browse files
authored
Merge pull request #102 from rajeeja/release_05
Pre-commit changes, remove linter
2 parents 9353044 + a64ec74 commit e62e752

File tree

283 files changed

+21168
-14373
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

283 files changed

+21168
-14373
lines changed

.github/workflows/lint.yml

-20
This file was deleted.

.github/workflows/pre-commit.yml

+15
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,15 @@
1+
name: pre-commit
2+
3+
on:
4+
pull_request:
5+
push:
6+
branches:
7+
- master
8+
9+
jobs:
10+
pre-commit:
11+
runs-on: ubuntu-latest
12+
steps:
13+
- uses: actions/checkout@v3
14+
- uses: actions/setup-python@v3
15+
- uses: pre-commit/[email protected]

Pilot1/Attn/attn.py

+116-106
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
11
from __future__ import print_function
22

3+
import logging
34
import os
45
import sys
5-
import logging
66

7-
import pandas as pd
87
import numpy as np
8+
import pandas as pd
99

1010
file_path = os.path.dirname(os.path.realpath(__file__))
1111

@@ -15,64 +15,72 @@
1515
candle.set_parallelism_threads()
1616

1717
additional_definitions = [
18-
{'name': 'latent_dim',
19-
'action': 'store',
20-
'type': int,
21-
'help': 'latent dimensions'},
22-
{'name': 'residual',
23-
'type': candle.str2bool,
24-
'default': False,
25-
'help': 'add skip connections to the layers'},
26-
{'name': 'reduce_lr',
27-
'type': candle.str2bool,
28-
'default': False,
29-
'help': 'reduce learning rate on plateau'},
30-
{'name': 'warmup_lr',
31-
'type': candle.str2bool,
32-
'default': False,
33-
'help': 'gradually increase learning rate on start'},
34-
{'name': 'base_lr',
35-
'type': float,
36-
'help': 'base learning rate'},
37-
{'name': 'epsilon_std',
38-
'type': float,
39-
'help': 'epsilon std for sampling latent noise'},
40-
{'name': 'use_cp',
41-
'type': candle.str2bool,
42-
'default': False,
43-
'help': 'checkpoint models with best val_loss'},
44-
{'name': 'use_tb',
45-
'type': candle.str2bool,
46-
'default': False,
47-
'help': 'use tensorboard'},
48-
{'name': 'tsne',
49-
'type': candle.str2bool,
50-
'default': False,
51-
'help': 'generate tsne plot of the latent representation'}
18+
{"name": "latent_dim", "action": "store", "type": int, "help": "latent dimensions"},
19+
{
20+
"name": "residual",
21+
"type": candle.str2bool,
22+
"default": False,
23+
"help": "add skip connections to the layers",
24+
},
25+
{
26+
"name": "reduce_lr",
27+
"type": candle.str2bool,
28+
"default": False,
29+
"help": "reduce learning rate on plateau",
30+
},
31+
{
32+
"name": "warmup_lr",
33+
"type": candle.str2bool,
34+
"default": False,
35+
"help": "gradually increase learning rate on start",
36+
},
37+
{"name": "base_lr", "type": float, "help": "base learning rate"},
38+
{
39+
"name": "epsilon_std",
40+
"type": float,
41+
"help": "epsilon std for sampling latent noise",
42+
},
43+
{
44+
"name": "use_cp",
45+
"type": candle.str2bool,
46+
"default": False,
47+
"help": "checkpoint models with best val_loss",
48+
},
49+
{
50+
"name": "use_tb",
51+
"type": candle.str2bool,
52+
"default": False,
53+
"help": "use tensorboard",
54+
},
55+
{
56+
"name": "tsne",
57+
"type": candle.str2bool,
58+
"default": False,
59+
"help": "generate tsne plot of the latent representation",
60+
},
5261
]
5362

5463
required = [
55-
'activation',
56-
'batch_size',
57-
'dense',
58-
'dropout',
59-
'epochs',
60-
'initialization',
61-
'learning_rate',
62-
'loss',
63-
'optimizer',
64-
'rng_seed',
65-
'scaling',
66-
'val_split',
67-
'latent_dim',
68-
'batch_normalization',
69-
'epsilon_std',
70-
'timeout'
64+
"activation",
65+
"batch_size",
66+
"dense",
67+
"dropout",
68+
"epochs",
69+
"initialization",
70+
"learning_rate",
71+
"loss",
72+
"optimizer",
73+
"rng_seed",
74+
"scaling",
75+
"val_split",
76+
"latent_dim",
77+
"batch_normalization",
78+
"epsilon_std",
79+
"timeout",
7180
]
7281

7382

7483
class BenchmarkAttn(candle.Benchmark):
75-
7684
def set_locals(self):
7785
"""Functionality to set variables specific for the benchmark
7886
- required: set of required parameters for the benchmark.
@@ -86,63 +94,65 @@ def set_locals(self):
8694
self.additional_definitions = additional_definitions
8795

8896

89-
def extension_from_parameters(params, framework=''):
97+
def extension_from_parameters(params, framework=""):
9098
"""Construct string for saving model with annotation of parameters"""
9199
ext = framework
92-
for i, n in enumerate(params['dense']):
100+
for i, n in enumerate(params["dense"]):
93101
if n:
94-
ext += '.D{}={}'.format(i + 1, n)
95-
ext += '.A={}'.format(params['activation'][0])
96-
ext += '.B={}'.format(params['batch_size'])
97-
ext += '.E={}'.format(params['epochs'])
98-
ext += '.L={}'.format(params['latent_dim'])
99-
ext += '.LR={}'.format(params['learning_rate'])
100-
ext += '.S={}'.format(params['scaling'])
101-
102-
if params['epsilon_std'] != 1.0:
103-
ext += '.EPS={}'.format(params['epsilon_std'])
104-
if params['dropout']:
105-
ext += '.DR={}'.format(params['dropout'])
106-
if params['batch_normalization']:
107-
ext += '.BN'
108-
if params['warmup_lr']:
109-
ext += '.WU_LR'
110-
if params['reduce_lr']:
111-
ext += '.Re_LR'
112-
if params['residual']:
113-
ext += '.Res'
102+
ext += ".D{}={}".format(i + 1, n)
103+
ext += ".A={}".format(params["activation"][0])
104+
ext += ".B={}".format(params["batch_size"])
105+
ext += ".E={}".format(params["epochs"])
106+
ext += ".L={}".format(params["latent_dim"])
107+
ext += ".LR={}".format(params["learning_rate"])
108+
ext += ".S={}".format(params["scaling"])
109+
110+
if params["epsilon_std"] != 1.0:
111+
ext += ".EPS={}".format(params["epsilon_std"])
112+
if params["dropout"]:
113+
ext += ".DR={}".format(params["dropout"])
114+
if params["batch_normalization"]:
115+
ext += ".BN"
116+
if params["warmup_lr"]:
117+
ext += ".WU_LR"
118+
if params["reduce_lr"]:
119+
ext += ".Re_LR"
120+
if params["residual"]:
121+
ext += ".Res"
114122

115123
return ext
116124

117125

118126
def load_data(params, seed):
119127

120128
# start change #
121-
if params['train_data'].endswith('h5') or params['train_data'].endswith('hdf5'):
122-
print('processing h5 in file {}'.format(params['train_data']))
129+
if params["train_data"].endswith("h5") or params["train_data"].endswith("hdf5"):
130+
print("processing h5 in file {}".format(params["train_data"]))
123131

124-
url = params['data_url']
125-
file_train = params['train_data']
126-
train_file = candle.get_file(file_train, url + file_train, cache_subdir='Pilot1')
132+
url = params["data_url"]
133+
file_train = params["train_data"]
134+
train_file = candle.get_file(
135+
file_train, url + file_train, cache_subdir="Pilot1"
136+
)
127137

128-
df_x_train_0 = pd.read_hdf(train_file, 'x_train_0').astype(np.float32)
129-
df_x_train_1 = pd.read_hdf(train_file, 'x_train_1').astype(np.float32)
138+
df_x_train_0 = pd.read_hdf(train_file, "x_train_0").astype(np.float32)
139+
df_x_train_1 = pd.read_hdf(train_file, "x_train_1").astype(np.float32)
130140
X_train = pd.concat([df_x_train_0, df_x_train_1], axis=1, sort=False)
131141
del df_x_train_0, df_x_train_1
132142

133-
df_x_test_0 = pd.read_hdf(train_file, 'x_test_0').astype(np.float32)
134-
df_x_test_1 = pd.read_hdf(train_file, 'x_test_1').astype(np.float32)
143+
df_x_test_0 = pd.read_hdf(train_file, "x_test_0").astype(np.float32)
144+
df_x_test_1 = pd.read_hdf(train_file, "x_test_1").astype(np.float32)
135145
X_test = pd.concat([df_x_test_0, df_x_test_1], axis=1, sort=False)
136146
del df_x_test_0, df_x_test_1
137147

138-
df_x_val_0 = pd.read_hdf(train_file, 'x_val_0').astype(np.float32)
139-
df_x_val_1 = pd.read_hdf(train_file, 'x_val_1').astype(np.float32)
148+
df_x_val_0 = pd.read_hdf(train_file, "x_val_0").astype(np.float32)
149+
df_x_val_1 = pd.read_hdf(train_file, "x_val_1").astype(np.float32)
140150
X_val = pd.concat([df_x_val_0, df_x_val_1], axis=1, sort=False)
141151
del df_x_val_0, df_x_val_1
142152

143-
Y_train = pd.read_hdf(train_file, 'y_train')
144-
Y_test = pd.read_hdf(train_file, 'y_test')
145-
Y_val = pd.read_hdf(train_file, 'y_val')
153+
Y_train = pd.read_hdf(train_file, "y_train")
154+
Y_test = pd.read_hdf(train_file, "y_test")
155+
Y_val = pd.read_hdf(train_file, "y_val")
146156

147157
# assumes AUC is in the third column at index 2
148158
# df_y = df['AUC'].astype('int')
@@ -152,36 +162,36 @@ def load_data(params, seed):
152162
# scaler = StandardScaler()
153163
# df_x = scaler.fit_transform(df_x)
154164
else:
155-
print('expecting in file file suffix h5')
165+
print("expecting in file file suffix h5")
156166
sys.exit()
157167

158-
print('x_train shape:', X_train.shape)
159-
print('x_test shape:', X_test.shape)
168+
print("x_train shape:", X_train.shape)
169+
print("x_test shape:", X_test.shape)
160170

161171
return X_train, Y_train, X_val, Y_val, X_test, Y_test
162172

163173
# start change #
164-
if train_file.endswith('h5') or train_file.endswith('hdf5'):
165-
print('processing h5 in file {}'.format(train_file))
174+
if train_file.endswith("h5") or train_file.endswith("hdf5"):
175+
print("processing h5 in file {}".format(train_file))
166176

167-
df_x_train_0 = pd.read_hdf(train_file, 'x_train_0').astype(np.float32)
168-
df_x_train_1 = pd.read_hdf(train_file, 'x_train_1').astype(np.float32)
177+
df_x_train_0 = pd.read_hdf(train_file, "x_train_0").astype(np.float32)
178+
df_x_train_1 = pd.read_hdf(train_file, "x_train_1").astype(np.float32)
169179
X_train = pd.concat([df_x_train_0, df_x_train_1], axis=1, sort=False)
170180
del df_x_train_0, df_x_train_1
171181

172-
df_x_test_0 = pd.read_hdf(train_file, 'x_test_0').astype(np.float32)
173-
df_x_test_1 = pd.read_hdf(train_file, 'x_test_1').astype(np.float32)
182+
df_x_test_0 = pd.read_hdf(train_file, "x_test_0").astype(np.float32)
183+
df_x_test_1 = pd.read_hdf(train_file, "x_test_1").astype(np.float32)
174184
X_test = pd.concat([df_x_test_0, df_x_test_1], axis=1, sort=False)
175185
del df_x_test_0, df_x_test_1
176186

177-
df_x_val_0 = pd.read_hdf(train_file, 'x_val_0').astype(np.float32)
178-
df_x_val_1 = pd.read_hdf(train_file, 'x_val_1').astype(np.float32)
187+
df_x_val_0 = pd.read_hdf(train_file, "x_val_0").astype(np.float32)
188+
df_x_val_1 = pd.read_hdf(train_file, "x_val_1").astype(np.float32)
179189
X_val = pd.concat([df_x_val_0, df_x_val_1], axis=1, sort=False)
180190
del df_x_val_0, df_x_val_1
181191

182-
Y_train = pd.read_hdf(train_file, 'y_train')
183-
Y_test = pd.read_hdf(train_file, 'y_test')
184-
Y_val = pd.read_hdf(train_file, 'y_val')
192+
Y_train = pd.read_hdf(train_file, "y_train")
193+
Y_test = pd.read_hdf(train_file, "y_test")
194+
Y_val = pd.read_hdf(train_file, "y_val")
185195

186196
# assumes AUC is in the third column at index 2
187197
# df_y = df['AUC'].astype('int')
@@ -191,10 +201,10 @@ def load_data(params, seed):
191201
# scaler = StandardScaler()
192202
# df_x = scaler.fit_transform(df_x)
193203
else:
194-
print('expecting in file file suffix h5')
204+
print("expecting in file file suffix h5")
195205
sys.exit()
196206

197-
print('x_train shape:', X_train.shape)
198-
print('x_test shape:', X_test.shape)
207+
print("x_train shape:", X_train.shape)
208+
print("x_test shape:", X_test.shape)
199209

200210
return X_train, Y_train, X_val, Y_val, X_test, Y_test

0 commit comments

Comments
 (0)