-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_search.py
262 lines (202 loc) · 9.79 KB
/
train_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import sys
import time
import glob
import numpy as np
import torch
import utils
import logging
import argparse
import torch.nn as nn
import torch.utils
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
from slow_fast_learning import init_pop, cal_center, gen_pairs, decode, update_state_dict, genotype
parser = argparse.ArgumentParser("cifar")
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--layers', type=int, default=8, help='total number of layers')
parser.add_argument('--set', type=str, default="cifar10", help='data set')
parser.add_argument('--pop_size', type=int, default=20, help='population size')
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument('--epochs', type=int, default=50, help='num of training epochs')
parser.add_argument('--init_channels', type=int, default=16, help='num of init channels')
parser.add_argument('--cutout', action='store_true', default=True, help='use cutout')
parser.add_argument('--report_freq', type=float, default=10, help='report frequency')
parser.add_argument('--train_portion', type=float, default=0.5, help='portion of training data')
parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument('--data', type=str, default='./data', help='location of the data corpus')
parser.add_argument('--learning_rate', type=float, default=0.1, help='init learning rate')
parser.add_argument('--learning_rate_min', type=float, default=0.001, help='min learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--model_path', type=str, default='saved_models', help='path to save the model')
parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument('--drop_path_prob', type=float, default=0.3, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument('--seed', type=int, default=7, help='random seed')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping')
args = parser.parse_args()
args.save = 'search-{}-{}'.format(args.save, time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
CIFAR_CLASSES = 10
if args.set == 'cifar100':
CIFAR_CLASSES = 100
def main():
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
np.random.seed(args.seed)
torch.cuda.set_device(args.gpu)
cudnn.benchmark = True
torch.manual_seed(args.seed)
cudnn.enabled = True
torch.cuda.manual_seed(args.seed)
logging.info('gpu device = %d' % args.gpu)
logging.info("args = %s", args)
logging.info("CIFAR_CLASSES = %s", CIFAR_CLASSES)
assert args.pop_size % 2 == 0
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
# initial population matrix
p, lu = init_pop(args)
# print the initial architectures in the population
for j in range(args.pop_size):
x = p[j]
logging.info(str(genotype(x)))
# initial a weight set using state_dict
arch = p[0]
aux_model = decode(args, CIFAR_CLASSES, arch, 0)
state_dict = aux_model.state_dict()
# matrix v is used to store the second derivatives
v = np.zeros_like(p)
optimizer = torch.optim.SGD(
aux_model.parameters(),
args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.set == 'cifar100':
train_transform, valid_transform = utils._data_transforms_cifar100(args)
train_data = dset.CIFAR100(root=args.data, train=True, download=False, transform=train_transform)
else:
train_transform, valid_transform = utils._data_transforms_cifar10(args)
train_data = dset.CIFAR10(root=args.data, train=True, download=False, transform=train_transform)
# divide the training set into training set and validation set
num_train = len(train_data)
indices = list(range(num_train))
import random
random.shuffle(indices)
random.shuffle(indices)
split = int(np.floor(args.train_portion * num_train))
train_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
pin_memory=True, num_workers=2)
valid_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
pin_memory=True, num_workers=2)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, float(args.epochs), eta_min=args.learning_rate_min)
for epoch in range(args.epochs):
lr = scheduler.get_lr()[0]
logging.info('epoch %d lr %e', epoch, lr)
# generate random pairs
rpairs = gen_pairs(args)
# calculate the center position
center, var = cal_center(args, p)
logging.info('the diversity is %e', var)
# do paired learning
# mask is used to indicate the index of teachers
mask = np.zeros(args.pop_size//2, dtype=np.int_)
for i in range(args.pop_size//2):
arch_a = p[rpairs[i, 0], :]
arch_b = p[rpairs[i, 1], :]
# decode the architecture vectors into networks
model_a = decode(args, CIFAR_CLASSES, arch_a, epoch)
model_b = decode(args, CIFAR_CLASSES, arch_b, epoch)
# training
model_a, train_acc_a, _ = train(train_queue, model_a, state_dict, criterion, lr)
model_b, train_acc_b, _ = train(train_queue, model_b, state_dict, criterion, lr)
# validation
valid_acc_a, valid_loss_a = infer(valid_queue, model_a, criterion)
valid_acc_b, valid_loss_b = infer(valid_queue, model_b, criterion)
mask[i] = (valid_loss_a > valid_loss_b)
if valid_loss_a < valid_loss_b:
state_dict = update_state_dict(state_dict, model_a, model_b)
else:
state_dict = update_state_dict(state_dict, model_b, model_a)
logging.info('model_a: %d model_b: %d mask:%d', rpairs[i, 0], rpairs[i, 1], mask[i])
logging.info('valid_acc comp %f %f', valid_acc_a, valid_acc_b)
logging.info('valid_loss comp %f %f', valid_loss_a, valid_loss_b)
# get the matrix of students and teachers
students = mask * rpairs[:, 0] + np.logical_not(mask) * rpairs[:, 1]
teachers = np.logical_not(mask) * rpairs[:, 0] + mask * rpairs[:, 1]
# random matrix
randco1 = np.random.rand(p.shape[0] // 2, p.shape[1])
randco2 = np.random.rand(p.shape[0] // 2, p.shape[1])
# students learn from teachers
v[students, :] = randco1 * v[students, :] + randco2 * (p[teachers, :] - p[students, :])
p[students, :] = p[students, :] + v[students, :]
# boundary control
for i in range(args.pop_size // 2):
p[students[i], :] = np.maximum(p[students[i], :], lu[0, :])
p[students[i], :] = np.minimum(p[students[i], :], lu[1, :])
# print the architectures of the population
for j in range(args.pop_size):
x = p[j]
logging.info(str(genotype(x)))
scheduler.step()
def train(train_queue, model, state_dict, criterion, lr):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
# model load weights from the weight set
model.load_state_dict(state_dict, strict=True)
model.train()
optimizer = torch.optim.SGD(
model.parameters(),
lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
for step, (input, target) in enumerate(train_queue):
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
optimizer.zero_grad()
logits = model(input)
loss = criterion(logits, target)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.data.item(), n)
top1.update(prec1.data.item(), n)
top5.update(prec5.data.item(), n)
# if step % args.report_freq == 0:
# logging.info('train %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
return model, top1.avg, objs.avg
def infer(valid_queue, model, criterion):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
model.eval()
for step, (input, target) in enumerate(valid_queue):
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
logits = model(input)
loss = criterion(logits, target)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.data.item(), n)
top1.update(prec1.data.item(), n)
top5.update(prec5.data.item(), n)
# if step % args.report_freq == 0:
# logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
return top1.avg, objs.avg
if __name__ == '__main__':
main()