-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrain_evaluate_ddd17.py
224 lines (210 loc) · 9.61 KB
/
retrain_evaluate_ddd17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import pdb
from turtle import pen
import warnings
import numpy as np
import torch
import torch.nn as nn
import torch.utils.data
import torch.backends.cudnn
import torch.optim as optim
import torch.nn.functional as F
import dataloaders
from utils.utils import AverageMeter
from utils.loss import build_criterion
from utils.step_lr_scheduler import Iter_LR_Scheduler
from retrain_model.build_model_retrain_SNN import AutoRetrain
from dataloaders.datasets.ddd17 import DDD17Segmentation
from dataloaders.datasets.ddd17_images import DDD17_images_Segmentation
from config_utils.snn_re_train_evaluate import obtain_retrain_evaluate_autodeeplab_args
from torchinfo import summary
import matplotlib
import matplotlib.image as img
from mypath import Path
from utils.utils import AverageMeter, inter_and_union
from utils.summaries import TensorboardSummary
from utils.metrics import Evaluator
from torch.utils.data.dataloader import DataLoader
import random
def set_seed(seed=0):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def convert_str2index(this_str, is_b=False, is_wight=False, is_cell=False, is_aspp=False, is_decoder =False):
if is_wight:
this_str = this_str.split('.')[:-1] + ['conv1','weight']
elif is_b:
this_str = this_str.split('.')[:-1] + ['snn_optimal','b']
elif is_cell:
this_str = this_str.split('.')[:5]
elif is_aspp:
this_str = this_str.split('.')[:4]
else:
this_str = this_str.split('.')
new_index = []
for i, value in enumerate(this_str):
if value.isnumeric():
new_index.append('[%s]'%value)
else:
if i == 0:
new_index.append(value)
else:
new_index.append('.'+value)
return ''.join(new_index)
def reset_mem(model,mem_keys):
for key in mem_keys:
exec('model.%s.mem=None'%key)
return model
def main():
warnings.filterwarnings('ignore')
assert torch.cuda.is_available()
torch.backends.cudnn.benchmark = True
args = obtain_retrain_evaluate_autodeeplab_args()
model_fname = 'logs/retrain/retrain_best_model/trained_model/{0}_{1}_epoch%d.pth'.format(args.dataset, args.exp)
print("model_fname:",model_fname)
if args.dataset == 'ddd17':
kwargs = {'num_workers': args.workers, 'pin_memory': True, 'drop_last': True}
dataset_loader, num_classes = dataloaders.make_data_loader(args, **kwargs)
dataset_val = DDD17Segmentation(args, root=Path.db_root_dir(args.dataset), split='test')
args.num_classes = num_classes
elif args.dataset == 'ddd17_images':
kwargs = {'num_workers': args.workers, 'pin_memory': True, 'drop_last': True}
dataset_loader, num_classes = dataloaders.make_data_loader(args, **kwargs)
dataset_val = DDD17_images_Segmentation(args, root=Path.db_root_dir(args.dataset), split='test')
args.num_classes = num_classes
else:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
set_seed(args.seed)
# use ABN
args.use_ABN = False
# fix seed
set_seed(args.seed)
if args.backbone == 'autodeeplab':
model = AutoRetrain(args)
else:
raise ValueError('Unknown backbone: {}'.format(args.backbone))
if args.criterion == 'Ohem':
args.thresh = 0.7
args.crop_size = [args.crop_size, args.crop_size] if isinstance(args.crop_size, int) else args.crop_size
args.n_min = int((args.batch_size / len(args.gpu) * args.crop_size[0] * args.crop_size[1]) // 16)
criterion = build_criterion(args)
model = nn.DataParallel(model).cuda()
if args.freeze_bn:
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
m.weight.requires_grad = False
m.bias.requires_grad = False
# optimizer = optim.SGD(model.module.parameters(), lr=args.base_lr, momentum=0.9, weight_decay=0.0001)
optimizer = optim.Adam(model.module.parameters(), lr=args.base_lr, amsgrad=True, weight_decay=5e-4)
model_all_keys = [name for name, value in model.named_parameters()]
all_keys = [convert_str2index(name,is_cell=True) for name, value in model.named_parameters() if '_ops' in name]
all_keys = list(set(all_keys))
mem_keys = list()
for key in all_keys:
try:
eval('model.%s.mem'%key)
mem_keys.append(key)
except:
print(key)
pass
# for save grad
model_all_keys = [name for name, value in model.named_parameters()]
exp_num = args.net_arch[args.net_arch.find("experiment_")+11:-23]
retrain_evaluator = Evaluator(num_classes)
if not args.no_val:
evaluator = Evaluator(num_classes)
val_dataloader = DataLoader(dataset_val, batch_size=args.batch_size, shuffle=False)
max_iteration = len(dataset_loader) * 101
# max_iteration = len(dataset_loader) * args.epochs
scheduler = Iter_LR_Scheduler(args, max_iteration, len(dataset_loader))
start_epoch = 0
if args.resume:
if os.path.isfile(args.resume):
print('=> loading checkpoint {0}'.format(args.resume))
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print('=> loaded checkpoint {0} (epoch {1})'.format(args.resume, checkpoint['epoch']))
else:
raise ValueError('=> no checkpoint found at {0}'.format(args.resume))
for epoch in range(start_epoch, args.epochs):
retrain_evaluator.reset()
losses = AverageMeter()
retrain_loss = 0.0
model.train()
for i, sample in enumerate(dataset_loader):
cur_iter = epoch * len(dataset_loader) + i
scheduler(optimizer, cur_iter)
inputs = sample['image'].cuda()
target = sample['label'].cuda()
reset_mem(model,mem_keys)
outputs = model(inputs)
out_retrain = outputs.reshape(-1,outputs.shape[2],outputs.shape[3],outputs.shape[4])
tar_retrain = target[:,int(args.burning_time):].reshape(-1,target.shape[2],target.shape[3])
loss = criterion(out_retrain, tar_retrain)
if np.isnan(loss.item()) or np.isinf(loss.item()):
pdb.set_trace()
losses.update(loss.item(), args.batch_size)
loss.backward()
retrain_evaluator.add_batch(tar_retrain.cpu().numpy(), np.argmax(out_retrain.data.cpu().numpy(),axis=1))
optimizer.step()
optimizer.zero_grad()
retrain_loss += loss.item()
print('epoch: {0}\t''iter: {1}/{2}\t''lr: {3:.6f}\t''loss: {loss.val:.4f} ({loss.ema:.4f})'.format(
epoch + 1, i + 1, len(dataset_loader), scheduler.get_lr(optimizer), loss=losses))
# if epoch < args.epochs - 50:
retrain_mIoU = retrain_evaluator.Mean_Intersection_over_Union()
print('retrain_mIoU:',retrain_mIoU,' reset local total loss!')
if args.epochs <= 101:
save_epoch = 10
else:
save_epoch = 50
if epoch % save_epoch == 0 or epoch == args.epochs:
torch.save({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, model_fname % (epoch + 1))
if not args.no_val:
model.eval()
evaluator.reset()
inter_meter = AverageMeter()
union_meter = AverageMeter()
for i, sample in enumerate(val_dataloader):
inputs, target = sample['image'], sample['label']
N, S, H, W = target.shape
total_outputs = torch.zeros((N, dataset_val.NUM_CLASSES, H, W)).cuda()
# if(i<31):
with torch.no_grad():
inputs = inputs.cuda()
reset_mem(model,mem_keys)
outputs = model(inputs)
out_retrain = outputs.reshape(-1,outputs.shape[2],outputs.shape[3],outputs.shape[4])
tar_retrain = target[:,int(args.burning_time):].reshape(-1,target.shape[2],target.shape[3])
_, pred = torch.max(out_retrain, 1)
pred = pred.detach().cpu().numpy().squeeze().astype(np.uint8)
mask = tar_retrain.numpy().astype(np.uint8)
print('eval: {0}/{1}'.format(i + 1, len(val_dataloader)))
# evaluate method in training process
target_new = tar_retrain.cpu().numpy()
pred_new = out_retrain.data.cpu().numpy()
pred_new = np.argmax(pred_new, axis=1)
evaluator.add_batch(target_new, pred_new)
inter, union = inter_and_union(pred, mask, args.num_classes)
inter_meter.update(inter)
union_meter.update(union)
iou = inter_meter.sum / (union_meter.sum + 1e-10)
miou = 'epoch: {0} Mean IoU: {1:.2f}'.format(epoch, iou.mean() * 100)
miou_new= evaluator.Mean_Intersection_over_Union()
miou_e_nan = 'epoch: {0} Mean IoU: {1:.2f}'.format(epoch, miou_new * 100)
f_mIOU = open('log/result_mIOU_'+ args.dataset + '_'+ args.exp +'.txt','a')
f_mIOU.write('\n')
f_mIOU.write(miou_e_nan)
f_mIOU.write('\n')
f_mIOU.close()
if __name__ == "__main__":
main()