-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_ddd17.py
436 lines (387 loc) · 18.5 KB
/
search_ddd17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
from telnetlib import PRAGMA_HEARTBEAT
from xml.etree.ElementPath import prepare_descendant
import numpy as np
import torch
from tqdm import tqdm
from collections import OrderedDict
from mypath import Path
from dataloaders import make_data_loader
from utils.loss import SegmentationLosses
from utils.lr_scheduler import LR_Scheduler
from utils.saver import Saver
from utils.summaries import TensorboardSummary
from utils.metrics import Evaluator
from models.build_model_search import AutoSearch
from config_utils.snn_search_args import obtain_search_args
from utils.copy_state_dict import copy_state_dict
from utils.utils import AverageMeter, inter_and_union
import random
torch.backends.cudnn.benchmark = True
import apex
try:
from apex import amp
APEX_AVAILABLE = True
except ModuleNotFoundError:
APEX_AVAILABLE = False
def convert_str2index(this_str, is_b=False, is_wight=False, is_cell=False, is_search =False):
if is_wight:
this_str = this_str.split('.')[:-1] + ['conv1','weight']
elif is_b:
this_str = this_str.split('.')[:-1] + ['snn_optimal','b']
elif is_cell:
this_str = this_str.split('.')[:5]
elif is_search:
this_str = this_str.split('.')[:2]
else:
this_str = this_str.split('.')
new_index = []
for i, value in enumerate(this_str):
if value.isnumeric():
new_index.append('[%s]'%value)
else:
if i == 0:
new_index.append(value)
else:
new_index.append('.'+value)
return ''.join(new_index)
class Trainer(object):
def __init__(self, args):
self.args = args
# Define Saver
self.saver = Saver(args)
self.saver.save_experiment_config()
# Define Tensorboard Summary
self.summary = TensorboardSummary(self.saver.experiment_dir)
self.writer = self.summary.create_summary()
self.use_amp = True if (APEX_AVAILABLE and args.use_amp) else False
self.opt_level = args.opt_level
self.num_layer = args.num_layer
# timestep for RGB image
self.temp_steps = args.timestep
self.initial_channels = args.initial_channels
kwargs = {'num_workers': args.workers, 'pin_memory': True, 'drop_last':True}
self.train_loaderA, self.train_loaderB, self.val_loader, self.test_loader, self.nclass = make_data_loader(args, **kwargs)
if args.use_balanced_weights:
classes_weights_path = os.path.join(Path.db_root_dir(args.dataset), args.dataset+'_classes_weights.npy')
if os.path.isfile(classes_weights_path):
weight = np.load(classes_weights_path)
else:
raise NotImplementedError
weight = torch.from_numpy(weight.astype(np.float32))
else:
weight = None
self.criterion = SegmentationLosses(weight=weight, cuda=args.cuda).build_loss(mode=args.loss_type)
# Define network
model = AutoSearch(self.nclass, self.num_layer, self.temp_steps, self.criterion, self.args.filter_multiplier,
self.args.block_multiplier, self.args.step, self.initial_channels, self.args.sequence, self.args.burning_time, self.args.is_allsnn)
optimizer = torch.optim.SGD(
model.autodeeplab.weight_parameters(),
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay
)
self.model, self.optimizer = model, optimizer
self.architect_optimizer = torch.optim.Adam(self.model.autodeeplab.arch_parameters(),
lr=args.arch_lr, betas=(0.9, 0.999),
weight_decay=args.arch_weight_decay)
# Define Evaluator
self.evaluator = Evaluator(self.nclass)
# Define lr scheduler
self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr,
args.epochs, len(self.train_loaderA), min_lr=args.min_lr)
# TODO: Figure out if len(self.train_loader) should be devided by two ? in other module as well
# Using cuda
if args.cuda:
self.model = self.model.cuda()
# mixed precision
if self.use_amp and args.cuda:
keep_batchnorm_fp32 = True if (self.opt_level == 'O2' or self.opt_level == 'O3') else None
# fix for current pytorch version with opt_level 'O1'
if self.opt_level == 'O1' and torch.__version__ < '1.3':
for module in self.model.modules():
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
# Hack to fix BN fprop without affine transformation
if module.weight is None:
module.weight = torch.nn.Parameter(
torch.ones(module.running_var.shape, dtype=module.running_var.dtype,
device=module.running_var.device), requires_grad=False)
if module.bias is None:
module.bias = torch.nn.Parameter(
torch.zeros(module.running_var.shape, dtype=module.running_var.dtype,
device=module.running_var.device), requires_grad=False)
# print(keep_batchnorm_fp32)
self.model, [self.optimizer, self.architect_optimizer] = amp.initialize(
self.model, [self.optimizer, self.architect_optimizer], opt_level=self.opt_level,
keep_batchnorm_fp32=keep_batchnorm_fp32, loss_scale="dynamic")
print('cuda finished')
all_keys = [convert_str2index(name,is_cell=True) for name, value in model.named_parameters() if '_ops' in name]
all_keys = list(set(all_keys))
self.mem_down_keys = list()
self.mem_up_keys = list()
self.mem_same_keys = list()
for key in all_keys:
key_2 = convert_str2index(key,is_search=True)
try:
if key.split('.')[2][:7] == "_ops_do":
eval('model.%s.mem_down'% key_2)
self.mem_down_keys.append(key_2)
elif key.split('.')[2][:7] == "_ops_sa":
eval('model.%s.mem_same'% key_2)
self.mem_same_keys.append(key_2)
elif key.split('.')[2][:7] == "_ops_up":
eval('model.%s.mem_up'% key_2)
self.mem_up_keys.append(key_2)
else:
print("none")
except:
print(key)
pass
# for save grad
self.model_all_keys = [name for name, value in self.model.named_parameters()]
self.model_grad_dict = dict([(k,[]) for k in self.model_all_keys])
self.exp = max([int(x.split('_')[-1]) for x in self.saver.runs]) + 1 if self.saver.runs else 0
# print(" self.exp:", self.exp)
self.grad_save_path = "/home/z50021440/Semantic_Segmentation/autodeeplab-new_master/search_grad" +'/deeplab_{0}_{1}_{2}'.format(args.backbone, args.dataset, self.exp)
# Resuming checkpoint
self.best_pred = 0.0
if args.resume is not None:
if not os.path.isfile(args.resume):
raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
# if the weights are wrapped in module object we have to clean it
if args.clean_module:
self.model.load_state_dict(checkpoint['state_dict'])
state_dict = checkpoint['state_dict']
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove 'module.' of dataparallel
new_state_dict[name] = v
# self.model.load_state_dict(new_state_dict)
copy_state_dict(self.model.state_dict(), new_state_dict)
else:
if torch.cuda.device_count() > 1 or args.load_parallel:
copy_state_dict(self.model.module.state_dict(), checkpoint['state_dict'])
else:
copy_state_dict(self.model.state_dict(), checkpoint['state_dict'])
if not args.ft:
copy_state_dict(self.optimizer.state_dict(), checkpoint['optimizer'])
self.best_pred = checkpoint['best_pred']
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
# Clear start epoch if fine-tuning
if args.ft:
args.start_epoch = 0
# randomseed
if self.args.randomseed:
if self.args.num_randomseed > 0:
self.randomseed_interval = int(self.args.epochs / int(self.args.num_randomseed-1))
else:
raise ValueError('Unknown num for random seed.')
def training(self, epoch):
train_loss = 0.0
self.model.train()
tbar = tqdm(self.train_loaderA) # iterator
num_img_tr = len(self.train_loaderA)
for i, sample in enumerate(tbar):
image, target = sample['image'], sample['label'] # image [B,step, H,W,channels] or [B,step, H,W,channels]
if self.args.cuda:
image, target = image.cuda(), target.cuda()
self.scheduler(self.optimizer, i, epoch, self.best_pred)
self.optimizer.zero_grad()
self.reset_mem()
output = self.model(image)
out = output.reshape(-1,output.shape[2],output.shape[3],output.shape[4])
tar = target[:,int(self.args.burning_time):].reshape(-1,target.shape[2],target.shape[3])
loss = self.criterion(out, tar)
if self.use_amp:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
self.optimizer.step()
if epoch >= self.args.alpha_epoch:
search = next(iter(self.train_loaderB))
image_search, target_search = search['image'], search['label']
if self.args.cuda:
image_search, target_search = image_search.cuda (), target_search.cuda ()
self.architect_optimizer.zero_grad()
self.reset_mem()
output_search = self.model(image_search)
out_search = output_search.reshape(-1,output_search.shape[2],output_search.shape[3],output_search.shape[4])
tar_search = target_search[:,int(self.args.burning_time):].reshape(-1,target_search.shape[2],target_search.shape[3])
arch_loss = self.criterion(out_search, tar_search)
if self.use_amp:
with amp.scale_loss(arch_loss, self.architect_optimizer) as arch_scaled_loss:
arch_scaled_loss.backward()
else:
arch_loss.backward()
self.architect_optimizer.step()
train_loss += loss.item()
tbar.set_description('Train loss: %.3f' % (train_loss / (i + 1)))
save_grad = False
if save_grad == True:
# save grad
for name, model_param in self.model.named_parameters():
try:
this_grad = torch.mean(torch.abs(model_param.grad)).cpu().item()
self.model_grad_dict[name].append(this_grad)
except:
pass
np.save(self.grad_save_path +'model_grad_dict.npy',self.model_grad_dict)
# Show 10 * 3 inference results each epoch
if i % (num_img_tr // 10) == 0:
global_step = i + num_img_tr * epoch
if self.args.dataset !='ddd17' and self.args.dataset !='ddd17_evsn':
self.summary.visualize_image(self.writer, self.args.dataset, image, target, output, global_step)
self.writer.add_scalar('train/total_loss_epoch', train_loss, epoch)
print('[Epoch: %d, numImages: %5d]' % (epoch, i * self.args.batch_size + image.data.shape[0]))
print('Loss: %.3f' % train_loss)
if self.args.no_val:
# save checkpoint every epoch
is_best = False
if torch.cuda.device_count() > 1:
state_dict = self.model.module.state_dict()
else:
state_dict = self.model.state_dict()
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': state_dict,
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best)
def validation(self, epoch):
self.model.eval()
self.evaluator.reset()
tbar = tqdm(self.val_loader, desc='\r')
test_loss = 0.0
inter_meter = AverageMeter()
union_meter = AverageMeter()
for i, sample in enumerate(tbar):
image, target = sample['image'], sample['label']
if self.args.cuda:
image, target = image.cuda(), target.cuda()
with torch.no_grad():
self.reset_mem()
output = self.model(image)
out_search = output.reshape(-1,output.shape[2],output.shape[3],output.shape[4])
tar_search = target[:,int(self.args.burning_time):].reshape(-1,target.shape[2],target.shape[3])
loss = self.criterion(out_search, tar_search)
test_loss += loss.item()
tbar.set_description('Test loss: %.3f' % (test_loss / (i + 1)))
pred = out_search.data.cpu().numpy()
target = tar_search.cpu().numpy()
pred = np.argmax(pred, axis=1)
# Add batch sample into evaluator
self.evaluator.add_batch(target, pred)
# # Add batch sample into evaluator
# other method
_, pred_e = torch.max(out_search, 1)
pred_e = pred_e.detach().cpu().numpy().squeeze().astype(np.uint8)
mask = tar_search.cpu().numpy().astype(np.uint8)
inter, union = inter_and_union(pred_e, mask, 7)
inter_meter.update(inter)
union_meter.update(union)
iou_e = inter_meter.sum / (union_meter.sum + 1e-10)
miou_e = iou_e.mean() * 100
print('epoch: {0} Mean IoU: {1:.2f}'.format(epoch, miou_e))
# Fast test during the training
Acc = self.evaluator.Pixel_Accuracy()
Acc_class = self.evaluator.Pixel_Accuracy_Class()
mIoU = self.evaluator.Mean_Intersection_over_Union()
print("mIoU:",mIoU)
FWIoU = self.evaluator.Frequency_Weighted_Intersection_over_Union()
self.writer.add_scalar('val/total_loss_epoch', test_loss, epoch)
self.writer.add_scalar('val/mIoU', mIoU, epoch)
self.writer.add_scalar('val/mIoU_mean', miou_e, epoch)
self.writer.add_scalar('val/Acc', Acc, epoch)
self.writer.add_scalar('val/Acc_class', Acc_class, epoch)
self.writer.add_scalar('val/fwIoU', FWIoU, epoch)
print('Validation:')
print('[Epoch: %d, numImages: %5d]' % (epoch, i * self.args.batch_size + image.data.shape[0]))
print("Acc:{}, Acc_class:{}, mIoU:{}, fwIoU: {}".format(Acc, Acc_class, mIoU, FWIoU))
print('Loss: %.3f' % test_loss) # for all dataset
new_pred = mIoU
if new_pred > self.best_pred:
is_best = True
self.best_pred = new_pred
if torch.cuda.device_count() > 1:
state_dict = self.model.module.state_dict()
else:
state_dict = self.model.state_dict()
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': state_dict,
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best)
if self.args.randomseed:
if self.args.num_randomseed > 0:
if epoch == 0 or ((epoch+1) % self.randomseed_interval==0):
if torch.cuda.device_count() > 1:
state_dict = self.model.module.state_dict()
else:
state_dict = self.model.state_dict()
self.saver.save_epoch_module({
'epoch': epoch + 1,
'state_dict': state_dict,
'optimizer': self.optimizer.state_dict(),
'pred': mIoU,
}, epoch)
def reset_mem(self):
for key in self.mem_down_keys:
exec('self.model.%s.mem_down=None'%key)
for key in self.mem_same_keys:
exec('self.model.%s.mem_same=None'%key)
for key in self.mem_up_keys:
exec('self.model.%s.mem_up=None'%key)
def set_seed(seed=0):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main():
args = obtain_search_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
try:
args.gpu_ids = [int(s) for s in args.gpu_ids.split(',')]
except ValueError:
raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only')
if args.sync_bn is None:
if args.cuda and len(args.gpu_ids) > 1:
args.sync_bn = True
else:
args.sync_bn = False
# fix seed
set_seed(args.seed)
# default settings for epochs, batch_size and lr
if args.epochs is None:
epoches = {
'coco': 30,
'cityscapes': 40,
'pascal': 50,
'kd':10
}
args.epochs = epoches[args.dataset.lower()]
if args.batch_size is None:
args.batch_size = 4 * len(args.gpu_ids)
if args.test_batch_size is None:
args.test_batch_size = args.batch_size
#args.lr = args.lr / (4 * len(args.gpu_ids)) * args.batch_size
if args.checkname is None:
args.checkname = 'deeplab-'+str(args.backbone)
print(args)
# torch.manual_seed(args.seed)
trainer = Trainer(args)
print('Starting Epoch:', trainer.args.start_epoch)
print('Total Epoches:', trainer.args.epochs)
for epoch in range(trainer.args.start_epoch, trainer.args.epochs):
trainer.training(epoch)
if not trainer.args.no_val and epoch % args.eval_interval == (args.eval_interval - 1):
trainer.validation(epoch)
trainer.writer.close()
if __name__ == "__main__":
main()