-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaugmentation.py
298 lines (242 loc) · 9.67 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import numpy as np
import random
import scipy.misc
from scipy.ndimage.interpolation import map_coordinates, rotate, zoom
from scipy.ndimage.filters import gaussian_filter
from numpy import random
from read_data import BRATSReader
from keras.preprocessing.image import ImageDataGenerator
def next_bool(p):
return random.random() < p
num_filters = 16
alpha = 500
sigma = 20
dxs = np.random.uniform(-1, 1, (num_filters, 224, 224, 4))
dys = np.random.uniform(-1, 1, (num_filters, 224, 224, 4))
for i in range(num_filters):
dxs[i] = gaussian_filter(dxs[i], sigma, mode="constant", cval=0) * alpha
dys[i] = gaussian_filter(dys[i], sigma, mode="constant", cval=0) * alpha
x, y, z = np.meshgrid(np.arange(224), np.arange(224), np.arange(4))
def elastic_transform(image, label):
"""Elastic deformation of images as described in [Simard2003]_.
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in
Proc. of the International Conference on Document Analysis and
Recognition, 2003.
"""
# Params taken from https://arxiv.org/pdf/1705.03820.pdf
dx = dxs[np.random.randint(0, len(dxs))]
dy = dys[np.random.randint(0, len(dys))]
indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)), np.reshape(z, (-1, 1))
distored_image = map_coordinates(image, indices, order=1, mode='reflect')
distored_label = map_coordinates(np.expand_dims(label, -1), indices, order=1, mode='reflect')
img, lab = distored_image.reshape(image.shape), distored_label.reshape(image.shape)[:, :, 0]
return img, lab
def crop_center(img, h, w):
'''
Crop center of ndarray so result as size h, w, c.
:param img:
:param h:
:param w:
:return:
'''
hh, ww = img.shape[:2]
starth = (hh - h) // 2
startw = (ww - w) // 2
img = img[starth:starth + h, startw:startw + w, ...]
return img
# Inspired by https://arxiv.org/pdf/1705.03820.pdf
def train_augmentation(sample, label):
'''
:param sample: shape (h, w, 4) or (h, w, d, 4)
:return: sample of the same shape
'''
haxis = 0
waxis = 1
axial_plane = [haxis, waxis]
# brighness_factor = rng.uniform(.9, 1.1)
# sample *= brighness_factor
# sample *= np.random.rand(*sample.shape[0:-1], 1) * .1
sample = sample.astype(np.float32)
# flipping
if next_bool(.5):
sample = np.flip(sample, haxis)
label = np.flip(label, haxis)
if next_bool(.5):
sample = np.flip(sample, waxis)
label = np.flip(label, waxis)
# 180 degree rotation
if next_bool(.5):
sample = np.rot90(sample, 2, axes=axial_plane)
label = np.rot90(label, 2, axes=axial_plane)
# zoom_factor = random.uniform(.9, 1.1)
# sample = zoom(sample, zoom=zoom_factor, order=0)
# label = zoom(label, zoom=zoom_factor, order=0)
#
if False: # This is like super slow
rotation_degree = random.uniform(-10, 10)
sample = rotate(sample, angle=rotation_degree, axes=axial_plane, mode='nearest')
label = rotate(label, angle=rotation_degree, axes=axial_plane, mode='nearest')
sample = crop_center(sample, 224, 224)
label = crop_center(label, 224, 224)
sample, label = elastic_transform(sample, label)
return sample, label
# alternate method for data augmentation:
# keras inbuilt data generator for sample of shape (h, w, 4) and label of shape (h, w)
# -- has zoom and shear, but it didn't seem to improve dice scores.
datagen = ImageDataGenerator(
rotation_range=40,
# width_shift_range=0.2,
# height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
rand_num = random.randint(0, 10000) #generate random seed
_,_,modalities =sample.shape
X = np.empty(sample.shape)
y = np.empty(sample.shape[:-1], dtype=np.int8)
for j in range(0,modalities):
sl = np.expand_dims(sample[:,:,j] , axis=0) #for imagegenerator, we need the first dim as batch size #(1, 224,224)
sl = np.stack([sl,sl,sl], axis=-1) #like rgb #(1, 224,224,3)
for aug_data in datagen.flow(sl,y= None, batch_size=1, seed=rand_num):
X[:,:,j] = np.squeeze(aug_data)[:,:,1] # aug_data is (1, 224,224,3)
break
lab = np.expand_dims(label, axis=0) # (1, 224,224)
lab = np.stack([lab,lab,lab], axis=-1) # (1, 224,224,3)
for aug_lab in datagen.flow(lab,y= None, batch_size=1, seed=rand_num):
y[:,:] = np.squeeze(aug_lab)[:,:,1] # aug_lab is (1, 224,224,3)
break
return X, y
def test_augmentation(sample, label):
return sample, label
def preprocess(data, labels, pad_batch=False):
"""
:param data: (batch, height, width, depth)
:param labels: (batch, height, width, depth)
:return: tuple of processed tuple list data, and labels
"""
N, H, W, D = data.shape
# Crop or pad to 224x224x224
h_diff = 224 - H
w_diff = 224 - W
b_diff = 224 - N
if pad_batch: # Pad the batch size if using all axes
if b_diff > 0:
pad_top = b_diff // 2
pad_bottom = b_diff // 2 + b_diff % 2
pad_dims = [(pad_top, pad_bottom)]
elif b_diff < 0:
slice_top = -1 * b_diff // 2
slice_bottom = -1 * (b_diff // 2 - b_diff % 2)
data = data[:, slice_top:-slice_bottom, :, :]
labels = labels[:, slice_top:-slice_bottom, :, :]
pad_dims = [(0, 0)]
else:
pad_dims = [(0, 0)]
else:
pad_dims = [(0, 0)]
if h_diff > 0:
pad_top = h_diff // 2
pad_bottom = h_diff // 2 + h_diff % 2
pad_dims.append((pad_top, pad_bottom))
elif h_diff < 0:
slice_top = -1 * h_diff // 2
slice_bottom = -1 * (h_diff // 2 - h_diff % 2)
data = data[:, slice_top:-slice_bottom, :, :]
labels = labels[:, slice_top:-slice_bottom, :, :]
pad_dims.append((0, 0))
else:
pad_dims.append((0, 0))
if w_diff > 0:
pad_left = w_diff // 2
pad_right = w_diff // 2 + w_diff % 2
pad_dims.append((pad_left, pad_right))
elif w_diff < 0:
slice_left = -1 * w_diff // 2
slice_right = -1 * (w_diff // 2 - w_diff % 2)
data = data[:, :, slice_left:-slice_right, :]
labels = labels[:, :, slice_left:-slice_right, :]
pad_dims.append((0, 0))
else:
pad_dims.append((0, 0))
pad_dims.append((0, 0))
data = np.pad(data, pad_dims, mode='constant', constant_values=0)
labels = np.pad(labels, pad_dims, mode='constant', constant_values=0)
return data, labels
def preprocess3d(data, labels):
"""
:param data: (batch, height, width, depth, channels)
:param labels: (batch, height, width, depth)
:return: tuple of processed tuple list data, and labels
"""
N, H, W, D, C = data.shape
# Crop or pad to 224x224x224
h_diff = 224 - H
w_diff = 224 - W
d_diff = 224 - D
pad_dims = [(0, 0)]
if h_diff > 0:
pad_top = h_diff // 2
pad_bottom = h_diff // 2 + h_diff % 2
pad_dims.append((pad_top, pad_bottom))
elif h_diff < 0:
slice_top = -1 * h_diff // 2
slice_bottom = -1 * (h_diff // 2 - h_diff % 2)
data = data[:, slice_top:-slice_bottom, :, :, :]
labels = labels[:, slice_top:-slice_bottom, :, :, :]
pad_dims.append((0, 0))
if w_diff > 0:
pad_left = w_diff // 2
pad_right = w_diff // 2 + w_diff % 2
pad_dims.append((pad_left, pad_right))
elif w_diff < 0:
slice_left = -1 * w_diff // 2
slice_right = -1 * (w_diff // 2 - w_diff % 2)
data = data[:, :, slice_left:-slice_right, :, :]
labels = labels[:, :, slice_left:-slice_right, :, :]
pad_dims.append((0, 0))
# if d_diff > 0:
# pad_up = d_diff // 2
# pad_down = d_diff // 2 + d_diff % 2
# pad_dims.append((pad_up, pad_down))
# elif d_diff < 0:
# d_diff *= -1
# slice_up = d_diff // 2
# slice_down = (d_diff // 2 + d_diff % 2)
# data = data[..., slice_up:-slice_down]
# labels = labels[..., slice_up:-slice_down]
# pad_dims.append((0, 0))
pad_dims.append((0, 0))
data = np.pad(data, pad_dims, mode='constant', constant_values=0)
labels = np.pad(labels, pad_dims, mode='constant', constant_values=0)
print('Padded!')
return data, labels
if __name__ == '__main__':
ones = np.ones((1, 250, 250, 4), dtype=np.uint8)
ones, labels = preprocess(ones, ones, None)
print(ones[0, :, :, 2].shape)
ones = ones[0, :, :, :]
train, label = train_augmentation(ones, ones[:, :, 0])
print(train.shape, label.shape)
brats = BRATSReader(use_hgg=True, use_lgg=False)
# print(brats.get_mean_dev(.15, 't1ce'))
train_ids, val_ids, test_ids = brats.get_case_ids(.5)
case = brats.get_case(train_ids[0])
label = case['labels']
slice = np.empty((224, 224, 4))
slice_index = np.argmax(label.sum(0).sum(0), axis=0)
orig = label[:, :, slice_index]
slice[:, :, 0] = case['t1ce'][:, :, slice_index]
slice[:, :, 1] = case['t1'][:, :, slice_index]
slice[:, :, 2] = case['t2'][:, :, slice_index]
slice[:, :, 3] = case['flair'][:, :, slice_index]
orig_slice = slice
random.seed()
np.random.seed()
slice, label = train_augmentation(slice, label[:, :, slice_index])
slice = slice[:, :, 0]
scipy.misc.toimage(orig_slice[:, :, 0], mode='L').show(title='orig data')
scipy.misc.toimage(slice, mode='L').show(title='data')
scipy.misc.toimage(label * 255, mode='L').show(title='augmented label')
scipy.misc.toimage(orig * 255, mode='L').show(title='original label')