-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_slice_generator.py
211 lines (172 loc) · 8.08 KB
/
keras_slice_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import keras
import numpy as np
import itertools
from tqdm import tqdm
from augmentation import preprocess, preprocess3d
import random
class SliceGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, reader, num_slices, list_ids, dim, config, augmentor, use_all_cross_sections):
'Initialization'
self.augmentor = augmentor
self.reader = reader
self.list_ids = list(itertools.product(list_ids, range(num_slices)))
self.list_ids = sorted(self.list_ids)
self.use_all_cross_sections = use_all_cross_sections
batch, height, width, channels = dim
self.dim = (height, width, channels)
self.batch_size = batch
self.n_channels = channels
self.cases = []
self.use_ram = config.use_ram
self.length = int(np.ceil(len(self.list_ids) / self.batch_size))
if self.use_ram:
self.list_ids = list(itertools.product(range(len(list_ids)), range(num_slices)))
for index, id in tqdm(enumerate(list_ids), total=len(list_ids), ncols=60):
case = reader.get_case(id)
data = np.stack(
[self.normalize(case['flair']), self.normalize(case['t1']), self.normalize(case['t1ce']),
self.normalize(case['t2'])], axis=-1)
labels = case['labels']
data = np.transpose(data, axes=[2, 0, 1, 3])
labels = np.transpose(np.expand_dims(labels, -1), [2, 0, 1, 3])
data, labels = preprocess(data, labels, pad_batch=self.use_all_cross_sections)
labels = np.squeeze(labels, -1)
data = data.astype(np.float16)
labels = labels.astype(np.uint8)
self.cases.append((data, labels))
self.on_epoch_end()
def normalize(self, x):
mask = x[x > 0]
mean = mask.mean()
std = mask.std()
return (x - mean) / std
def __len__(self):
'Denotes the number of batches per epoch'
return self.length
def __getitem__(self, index):
'Generate one batch of data'
if index >= self.length:
raise IndexError()
list_ids_tmp = self.list_ids[index * self.batch_size:(index + 1) * self.batch_size]
return self.__data_generation(list_ids_tmp)
def on_epoch_end(self):
'Updates indexes after each epoch'
np.random.shuffle(self.list_ids)
def __data_generation(self, list_ids_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
if self.use_ram:
shape = (len(list_ids_temp), 224, 224, 4)
X = np.empty(shape)
y = np.empty(shape[:-1], dtype=np.int8)
for i, (case_index, slice_index) in enumerate(list_ids_temp):
data, label = self.cases[case_index]
rand_num = random.random() if self.use_all_cross_sections else 0
if rand_num < 0.33:
slice = data[slice_index]
label = label[slice_index]
elif rand_num < 0.66:
slice = data[:, slice_index + 34, :, :]
label = label[:, slice_index + 34, :]
else:
slice = data[:, :, slice_index + 34, :]
label = label[:, :, slice_index + 34]
X[i], y[i] = self.augmentor(slice, label)
return X, np.expand_dims(y, -1)
shape = (len(list_ids_temp), *self.dim)
X = np.empty(shape)
y = np.empty(shape[:-1], dtype=np.int8)
# print('Generating data for indices', list_IDs_temp)
# Generate data
for i, (patient_id, slice_index) in enumerate(list_ids_temp):
# Store sample
dic = self.reader.get_case(patient_id)
slice = np.empty(self.dim)
slice[:, :, 0] = self.normalize(dic['t1ce'])[:, :, slice_index]
slice[:, :, 1] = self.normalize(dic['t1'])[:, :, slice_index]
slice[:, :, 2] = self.normalize(dic['t2'])[:, :, slice_index]
slice[:, :, 3] = self.normalize(dic['flair'])[:, :, slice_index]
X[i], y[i] = (slice, dic['labels'][:, :, slice_index])
y = np.expand_dims(y, axis=-1)
X, y = preprocess(X, y)
y = np.squeeze(y, axis=-1)
for i in range(X.shape[0]):
X[i], y[i] = self.augmentor(X[i], y[i])
def get_sample_cases(self, num_samples=10):
samples = self.list_ids[0:num_samples]
processed, targets = self.__data_generation(samples)
originals = processed[:, :, :, 2]
return originals, processed, targets
class VolumeGenerator(keras.utils.Sequence):
def __init__(self, reader, num_slices, list_ids, dim, config, augmentor):
self.augmentor = augmentor
self.reader = reader
self.config = config
self.list_ids = sorted(list_ids)
batch, height, width, _, channels = dim
self.dim = (height, width, num_slices, channels)
self.batch_size = batch
self.n_channels = channels
self.on_epoch_end()
self.cases = {}
self.use_ram = config.use_ram
if self.use_ram:
for index in tqdm(list_ids, total=len(list_ids), ncols=60):
case = reader.get_case(index)
data = np.stack([self.normalize(case['flair']), self.normalize(case['t1']), self.normalize(case['t1ce']), self.normalize(case['t2'])], axis=-1)
labels = case['labels']
data = data.astype(np.float16)
labels = labels.astype(np.uint8)
self.cases[index] = (data, labels)
def normalize(self, x):
mask = x[x > 0]
mean = mask.mean()
std = mask.std()
return (x - mean) / std
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.ceil(len(self.list_ids) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
list_ids_tmp = self.list_ids[index * self.batch_size:(index + 1) * self.batch_size]
return self.__data_generation(list_ids_tmp)
def on_epoch_end(self):
'Updates indexes after each epoch'
np.random.shuffle(self.list_ids)
def __data_generation(self, list_ids_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
shape = (len(list_ids_temp), 64, 64, 64, 4)
X = np.empty(shape)
y = np.empty(shape[:-1], dtype=np.int8)
if self.use_ram:
# X = np.empty(self.dim)
# y = np.empty(shape[:-1], dtype=np.int8)
for i, patient_id in enumerate(list_ids_temp):
volume, label = self.cases[patient_id] # Volume is (224, 224, 155, 4), label is (224, 224, 155, 1)
h, w = np.random.randint(0, 224 - 64, 2)
d = np.random.randint(0, 155 - 64)
X[i] = volume[h:h+64, w:w+64, d:d+64, :]
y[i] = label[h:h+64, w:w+64, d:d+64]
X[i], y[i] = self.augmentor(volume, label)
return preprocess3d(X, np.expand_dims(y, -1))
# print('Generating data for indices', list_IDs_temp)
# Generate data
for i, patient_id in enumerate(list_ids_temp):
# Store sample
dic = self.reader.get_case(patient_id)
volume = np.empty(self.dim)
volume[:, :, :, 0] = self.normalize(dic['t1ce'])[ :, :, :]
volume[:, :, :, 1] = self.normalize(dic['t1'])[ :, :, :]
volume[:, :, :, 2] = self.normalize(dic['t2'])[ :, :, :]
volume[:, :, :, 3] = self.normalize(dic['flair'])[:, :, :]
# X[i], y[i] = self.augmentor(slice_, dic['labels'][:, :, slice_index])
X[i], y[i] = volume, dic['labels']
y = np.expand_dims(y, axis=-1)
return preprocess3d(X, y)
def get_sample_cases(self, num_samples=10):
samples = self.list_ids[0:num_samples]
processed, targets = self.__data_generation(samples)
originals = processed[:, :, :, 2]
return originals, processed, targets