This repository was archived by the owner on Jan 20, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
76 lines (64 loc) · 1.71 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python
"""
Configuration, constants and helper functions for the project.
"""
from __future__ import annotations
import typing as tp
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from imc.types import Path, DataFrame # type: ignore
figkws = dict(dpi=300, bbox_inches="tight")
metadata_dir = Path("metadata")
data_dir = Path("data")
results_dir = Path("results")
X_FILE = data_dir / "assay_data.csv"
Y_FILE = data_dir / "metadata.csv"
attributes = [
"age",
"sex",
"obesity",
"bmi",
"race",
"hospitalized",
"intubated",
"patient_group",
"WHO_score_sample",
"WHO_score_patient",
"alive",
"days_since_symptoms",
"days_since_hospitalization",
]
palettes = dict(
sex=sns.color_palette("Pastel1")[3:5],
obesity=sns.color_palette("tab10")[3:6],
race=sns.color_palette("tab10"),
hospitalized=sns.color_palette("Set2")[:2],
intubated=sns.color_palette("Set2")[:2],
patient_group=np.asarray(sns.color_palette("Set1"))[[2, 1, 7, 3, 0]].tolist(),
WHO_score_sample=sns.color_palette("inferno", 9),
WHO_score_patient=sns.color_palette("inferno", 9),
alive=sns.color_palette("Dark2")[:2],
)
cmaps = dict(
age="winter_r",
bmi="copper",
days_since_symptoms="cividis",
days_since_hospitalization="cividis",
)
_q = np.random.choice(range(40), 40, replace=False)
tab40 = matplotlib.colors.ListedColormap(
colors=np.concatenate(
[
plt.get_cmap("tab20c")(range(20)),
plt.get_cmap("tab20b")(range(20)),
]
)[_q],
name="tab40",
)
patches = (
matplotlib.collections.PatchCollection,
matplotlib.collections.PathCollection,
)