This repository was archived by the owner on Jan 20, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
588 lines (520 loc) · 21 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import typing as tp
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import pingouin as pg
import statsmodels.formula.api as smf
from seaborn_extensions import clustermap, swarmboxenplot
from src.types import DataFrame, Array, Figure
from src.config import results_dir, figkws, palettes, cmaps
from src.utils import z_score, minmax_scale
__all__ = [
"unsupervised",
"get_explanatory_variables",
"overlay_individuals_over_global",
"plot_projection",
]
def unsupervised(
x: DataFrame,
y: DataFrame,
var: DataFrame = None,
attributes: tp.Sequence[str] = None,
data_type: str = "NMR",
suffix: str = "",
) -> None:
"""
Unsupervised analysis of data using sample/feature correlations and
dimentionality reduction and their visualization dependent on sample attributes.
"""
from sklearn.decomposition import PCA, NMF
from sklearn.manifold import MDS, Isomap, TSNE, SpectralEmbedding
from umap import UMAP
from src.models import PyMDE, DiffMap
if attributes is None:
attributes = list()
output_dir = (results_dir / f"unsupervised_{data_type}{suffix}").mkdir()
output_prefix = output_dir / "unsupervised."
## Clustermaps
for c in ["abs", "z"]:
grid = clustermap(
x,
row_colors=y[attributes],
col_colors=var,
config=c,
rasterized=True,
)
grid.savefig(output_prefix + f"clustering.clustermap.{c}.svg", **figkws)
plt.close(grid.fig)
kws = dict(
cmap="RdBu_r",
rasterized=True,
cbar_kws=dict(label="Pearson correlation"),
xticklabels=False,
yticklabels=False,
)
grid = clustermap(z_score(x).corr(), center=0, **kws, row_colors=var)
grid.savefig(output_prefix + "correlation_variable.clustermap.svg", **figkws)
plt.close(grid.fig)
grid = clustermap(z_score(x).T.corr(), **kws, row_colors=y[attributes])
grid.savefig(output_prefix + "correlation_samples.clustermap.svg", **figkws)
plt.close(grid.fig)
## Dimres
for model, pkwargs, mkwargs in [
(PCA, dict(), dict()),
(NMF, dict(), dict()),
(MDS, dict(n_dims=1), dict()),
(TSNE, dict(n_dims=1), dict()),
(Isomap, dict(n_dims=1), dict()),
(UMAP, dict(n_dims=1), dict(random_state=0)),
(DiffMap, dict(n_dims=1), dict()),
(PyMDE, dict(n_dims=1), dict()),
(SpectralEmbedding, dict(n_dims=1), dict()),
][::-1]:
# model, pkwargs, mkwargs = (PyMDE, dict(), dict())
name = str(model).split(".")[-1].split("'")[0]
model_inst = model(**mkwargs)
for transf, label in [(lambda x: x, ""), (z_score, "Z-score.")]:
try: # this will occur for example in NMF with Z-score transform
res = pd.DataFrame(model_inst.fit_transform(transf(x)), index=x.index)
except ValueError:
continue
fig = plot_projection(res, y, factors=attributes, algo_name=name, **pkwargs)
fig.savefig(output_prefix + f"dimres.{name}.{label}svg", **figkws)
plt.close(fig)
def get_explanatory_variables(
x, y, data_type: str, suffix: str = "", attributes: tp.Sequence[str] = []
) -> None:
"""
Find variables explaining the latent space discovered unsupervisedly.
"""
from sklearn.manifold import SpectralEmbedding
import scipy
from seaborn_extensions.annotated_clustermap import plot_attribute_heatmap
output_dir = (results_dir / f"unsupervised_{data_type}{suffix}").mkdir()
output_prefix = output_dir / "unsupervised.variable_contribution_SpectralEmbedding."
xz = z_score(x)
res = pd.DataFrame(
SpectralEmbedding().fit_transform(xz),
index=x.index,
columns=["SE1", "SE2"],
)
# res.to_csv(output_prefix + "sample_positions.csv")
# Get order of variables along axes
feat_res = (
res[["SE1"]]
.join((xz.loc[res["SE2"] < 0]))
.corr()
.loc[x.columns, "SE1"]
.rename_axis(index="feature")
.to_frame()
)
feat_res = feat_res.join(
res[["SE2"]]
.join((xz.loc[res["SE1"] > 0]))
.corr()
.loc[x.columns, "SE2"]
.rename_axis(index="feature")
)
lat = minmax_scale(feat_res)
feat_res["joint"] = minmax_scale(lat["SE1"]) * (lat["SE2"])
feat_res.to_csv(output_prefix + "correlation.variable_ordering.csv")
# Get order of samples based on variable order
res["joint"] = xz.T.join(feat_res["joint"]).corr()["joint"].drop("joint")
res.to_csv(output_prefix + "correlation.sample_ordering.csv")
for text, label in [(False, "."), (True, ".with_text.")]:
fig, ax = plt.subplots(1, 1, figsize=(4 * 1.173175, 4))
# # plot sample scatter
m = ax.scatter(res["SE1"], res["SE2"], c=res["joint"], cmap="PiYG_r")
bb = ax.get_position()
cax = fig.add_axes((bb.xmax, bb.ymin, bb.width * 0.05, bb.height))
_ = fig.colorbar(m, label="Pseudotime", cax=cax)
# # plot variables as vectors
cmap = plt.get_cmap("inferno")
vmin, vmax = feat_res["joint"].apply([min, max])
for i in feat_res.index:
c = feat_res.loc[i, "joint"]
draw = c > 0.055
ax.plot(
(0, feat_res.loc[i, "SE1"] / 10),
(0, feat_res.loc[i, "SE2"] / 10),
c=cmap((c - vmin) / (vmax - vmin)),
linewidth=0.5,
alpha=0.5 if draw else 0.25,
)
if text and draw:
ha = "left" if feat_res.loc[i, "SE1"] > 0 else "right"
va = "bottom" if feat_res.loc[i, "SE2"] > 0 else "top"
ax.text(feat_res.loc[i, "SE1"] / 10, feat_res.loc[i, "SE2"] / 10, s=i, ha=ha, va=va)
ax.scatter(
feat_res.loc[i, "SE1"] / 10, feat_res.loc[i, "SE2"] / 10, s=1, color="green"
)
ax.axis("off")
fig.savefig(output_prefix + f"correlation.scatter_vectors{label}svg", **figkws)
# Heatmap ordered
sample_order = res.sort_values("joint").index
var_order = feat_res.sort_values("joint").index
lx = z_score(x).loc[sample_order, var_order]
# # apply some smoothing
lxs = pd.DataFrame(
scipy.ndimage.gaussian_filter(lx, 1, mode="mirror"),
lx.index,
lx.columns,
)
for df, label in [(lx, ""), (lxs, ".smoothed")]:
grid = clustermap(
df,
col_cluster=False,
row_cluster=False,
center=0,
cmap="RdBu_r",
robust=True,
row_colors=y[attributes].join(res),
col_colors=feat_res,
figsize=(16, 6),
rasterized=True,
)
grid.savefig(
output_prefix + f"ordered.clustermap{label}.svg",
**figkws,
)
if "palettes" in locals():
fig = plot_attribute_heatmap(
y.reindex(sample_order), attributes, palettes, cmaps, figsize=(16, 6)
)
fig.savefig(
output_prefix + f"ordered.clustermap{label}.colors.svg",
**figkws,
)
# Plot variable values along space
l = np.round(np.arange(-1, 1, 0.1), 1)
p = pd.DataFrame(index=l, columns=var_order)
for col in var_order:
xn = res.loc[sample_order, "joint"]
f = scipy.interpolate.interp1d(xn, xz.loc[sample_order, col], fill_value="extrapolate")
p[col] = f(l)
fig, ax = plt.subplots(figsize=(18, 2))
sns.heatmap(p.loc[p.index >= -0.8].iloc[:, 1:], center=0, cmap="RdBu_r", ax=ax, robust=True)
ax.set(ylabel="Pseudotime")
fig.savefig(output_prefix + "ordered.interpolated.heatmap.svg", **figkws)
# Compare with simple aggregation of severity score
p = z_score(xz.groupby(y["WHO_score_sample"]).mean())
fig, ax = plt.subplots(figsize=(18, 2))
sns.heatmap(p[var_order].iloc[:, 1:], center=0, cmap="RdBu_r", ax=ax, robust=True)
ax.set(ylabel="WHO_score_sample")
fig.savefig(output_dir / "mean_per_WHO_score_sample.ordered.heatmap.svg", **figkws)
def overlay_individuals_over_global(
x: DataFrame, y: DataFrame, data_type: str, suffix: str = "", attributes: tp.Sequence[str] = []
) -> None:
"""
Find variables explaining the latent space discovered unsupervisedly.
"""
"""
TODO: idea:
Derive the vector field of the latent space(s):
- get sparse vector field based on observed patient movement
(x, y) <- coordinates of vector origin
(u, v) <- direction
- plt.quiver(x, y, u, v)
- smooth or interpolate sparse field -> general field
"""
from sklearn.decomposition import PCA, NMF
from sklearn.manifold import MDS, Isomap, TSNE, SpectralEmbedding
from umap import UMAP
from src.models import PyMDE, DiffMap
from scipy.spatial.distance import pdist, squareform
from scipy import interpolate
from statsmodels.nonparametric.smoothers_lowess import lowess
output_dir = (results_dir / f"unsupervised_{data_type}{suffix}").mkdir()
_joint_metrics = list()
for model, pkwargs, mkwargs in [
(PCA, dict(), dict()),
# (NMF, dict(), dict()),
(MDS, dict(n_dims=1), dict()),
(TSNE, dict(n_dims=1), dict()),
(Isomap, dict(n_dims=1), dict()),
(UMAP, dict(n_dims=1), dict(random_state=0)),
(DiffMap, dict(n_dims=1), dict()),
(PyMDE, dict(n_dims=1), dict()),
(SpectralEmbedding, dict(n_dims=1), dict()),
][::-1]:
name = str(model).split(".")[-1].split("'")[0]
model_inst = model(**mkwargs)
res = (
pd.DataFrame(
model_inst.fit_transform(z_score(x))[:, :2],
index=x.index,
columns=["SE1", "SE2"],
)
* 1e3
)
dists = pd.DataFrame(squareform(pdist(res)), index=res.index, columns=res.index)
patient_timepoints = y.groupby("patient_code")["accession"].nunique()
patients = patient_timepoints[patient_timepoints > 1].index
# Metrics to calculate:
# # Total distance "run" over time
# # Overall direction (axis1 difference END - START)
_vector_field = list()
_metrics = list()
for patient in patients:
y2 = y.loc[y["patient_code"] == patient].sort_values(["date_sample"])
last = y2.iloc[-1].name
first = y2.iloc[0].name
# res.loc[y2.index].diff().abs().sum()
for s1, s2 in zip(y2.index[:-1], y2.index[1:]):
_vector_field.append([*res.loc[s1]] + [*res.loc[s2] - res.loc[s1]])
_dists = pd.Series(np.diag(dists.loc[y2.index[:-1], y2.index[1:]]))
_metrics.append(
pd.Series(
dict(
# step_distance=res.loc[y2.index].diff(),
# step_time=y2['date_sample'].diff(),
n_timepoints=y2.shape[0],
total_distance=_dists.sum(),
dislocation=dists.loc[first, last],
timedelta=y2.loc[last, "date_sample"] - y2.loc[first, "date_sample"],
),
name=patient,
)
)
vf = np.asarray(_vector_field)
metrics = pd.DataFrame(_metrics)
metrics.index.name = "patient_code"
metrics["time_days"] = metrics["timedelta"].apply(lambda x: x.days)
metrics["velo"] = metrics["total_distance"].abs() / metrics["time_days"]
metrics["velo_dir"] = metrics["total_distance"] / metrics["time_days"]
_joint_metrics.append(metrics.assign(method=name))
# Plot
fig, ax = plt.subplots(1, 1, figsize=(6, 4))
ax.scatter(*res.values.T, alpha=0.25, color="grey")
# # add lowess
fit = lowess(res["SE1"], res["SE2"])
ax.plot(*fit.T, color="black", linestyle="--")
colors = sns.color_palette("tab20", len(patients)) + sns.color_palette(
"Accent", len(patients)
)
for i, patient in enumerate(patients):
y2 = y.loc[y["patient_code"] == patient].sort_values(["date_sample"])
color = colors[i]
seve_color = palettes["WHO_score_sample"][y2["WHO_score_sample"].cat.codes[0]]
outcome = y2["alive"].iloc[0]
v = res.loc[y2.index].values
ax.text(
*v[0],
s=f"P{str(patient).zfill(2)} - start",
color=color,
ha="center",
va="center",
)
ax.text(
*v[-1],
s=f"P{str(patient).zfill(2)} - end: {outcome}",
color=color,
ha="center",
va="center",
)
ax.scatter(*v[0], s=12, color=color)
ax.scatter(*v[-1], s=12, color=color, marker="^")
for l1, l2 in zip(v[:-1], v[1:]):
ax.annotate(
"",
xy=l2,
xytext=l1,
arrowprops=dict(arrowstyle="->", color=color),
)
fig.savefig(
output_dir
/ f"unsupervised.{name}.patient_walk_in_space.scatter_arrow.P23_P24_detail.zoom.svg",
**figkws,
)
plt.close(fig)
fig, axes = plt.subplots(1, 4, figsize=(4 * 4, 4))
axes[0].scatter(metrics["time_days"], metrics["total_distance"])
axes[0].set(xlabel="Course (days)", ylabel="Distance (abs)")
sns.swarmplot(x=metrics["velo_dir"], ax=axes[1])
axes[1].set(xlabel="Overall velocity (distance/day)")
axes[2].scatter(metrics["time_days"], metrics["dislocation"])
axes[2].set(xlabel="Course (days)", ylabel="Total dislocation (end - start)")
v = metrics["total_distance"].max()
v -= v * 0.4
axes[3].scatter(
metrics["dislocation"],
metrics["total_distance"],
c=metrics["n_timepoints"],
)
axes[3].plot((-v, 0), (v, 0), linestyle="--", color="grey")
axes[3].plot((0, v), (0, v), linestyle="--", color="grey")
axes[3].set(xlabel="Total dislocation (end - start)", ylabel="Distance")
fig.savefig(
output_dir / f"unsupervised.{name}.patient_walk_in_space.metrics.svg",
**figkws,
)
plt.close(fig)
# Reconstruct vector field
fig, axes = plt.subplots(1, 2, figsize=(2 * 6, 4))
axes[0].scatter(*res.values.T, alpha=0.25, color="grey")
axes[0].quiver(*np.asarray(_vector_field).T, color=sns.color_palette("tab10")[0])
axes[0].set(title="Original")
axes[1].set(title="Interpolated")
m = abs(vf[:, 0:2].max())
xx = np.linspace(-m, m, 100)
yy = np.linspace(-m, m, 100)
xx, yy = np.meshgrid(xx, yy)
u_interp = interpolate.griddata(vf[:, 0:2], vf[:, 2], (xx, yy), method="cubic")
v_interp = interpolate.griddata(vf[:, 0:2], vf[:, 3], (xx, yy), method="cubic")
axes[1].scatter(*res.values.T, alpha=0.25, color="grey")
axes[1].quiver(*np.asarray(_vector_field).T, color=sns.color_palette("tab10")[0])
axes[1].quiver(xx, yy, u_interp, v_interp)
axes[1].set(xlim=axes[0].get_xlim(), ylim=axes[0].get_ylim())
fig.savefig(
output_dir / f"unsupervised.{name}.patient_walk_in_space.quiver.svg",
**figkws,
)
plt.close(fig)
# Consensus
joint_metrics = pd.concat(_joint_metrics)
joint_metrics.to_csv(output_dir / "unsupervised.all_methods.patient_walk_in_space.metrics.csv")
joint_metrics = pd.read_csv(
output_dir / "unsupervised.all_methods.patient_walk_in_space.metrics.csv",
index_col=0,
)
joint_metricsz = (
joint_metrics.groupby("method")[["total_distance", "dislocation", "velo", "velo_dir"]]
.apply(z_score)
.join(joint_metrics.groupby(level=0)[["n_timepoints", "time_days"]].apply(np.mean))
.groupby(level=0)
.mean()
)
fig, axes = plt.subplots(1, 4, figsize=(4 * 4, 4))
axes[0].scatter(
joint_metricsz["time_days"],
joint_metricsz["total_distance"],
c=joint_metricsz["n_timepoints"],
)
axes[0].set(xlabel="Course (days)", ylabel="Distance (Z-score, abs)")
axes[1].scatter(
np.random.random(joint_metricsz.shape[0]) / 10,
joint_metricsz["velo_dir"],
c=joint_metricsz["n_timepoints"],
)
# sns.swarmplot(x=joint_metricsz["velo_dir"], ax=axes[1])
axes[1].set(ylabel="Overall velocity (distance/day)", xlim=(-1, 1))
axes[2].scatter(
joint_metricsz["time_days"],
joint_metricsz["dislocation"],
c=joint_metricsz["n_timepoints"],
)
axes[2].set(
xlabel="Course (days)",
ylabel="Total dislocation (Z-score, end - start)",
)
v = joint_metricsz["total_distance"].max()
v -= v * 0.4
axes[3].scatter(
joint_metricsz["dislocation"],
joint_metricsz["total_distance"],
c=joint_metricsz["n_timepoints"],
)
axes[3].plot((-v, v), (-v, v), linestyle="--", color="grey")
axes[3].set(
xlabel="Total dislocation (Z-score, end - start)",
ylabel="Distance (Z-score)",
)
fig.savefig(
output_dir / "unsupervised.mean_methods.patient_walk_in_space.metrics.svg",
**figkws,
)
# See what velocity is related with
_stats = list()
for attribute in [a for a in attributes if a in palettes]:
df = (
joint_metricsz.join(y.set_index("patient_code")[[attribute]]).dropna().drop_duplicates()
)
fig, _ = swarmboxenplot(data=df, x=attribute, y="velo")
fig.savefig(
output_dir
/ f"unsupervised.mean_methods.patient_walk_in_space.velocity_vs_{attribute}.svg",
**figkws,
)
if not pg.homoscedasticity(data=df, dv="velo", group=attribute)["equal_var"].squeeze():
continue
if pg.anova(data=df, dv="velo", between=attribute)["p-unc"].squeeze() >= 0.05:
# continue
pass
_stats.append(
pg.pairwise_tukey(data=df, dv="velo", between=attribute).assign(attribute=attribute)
)
stats = pd.concat(_stats)
stats.pivot_table(index="A", columns="B", values="hedges")
stats.pivot_table(index="A", columns="B", values="diff")
stats = stats.query("attribute == 'WHO_score_patient'")
def plot_projection(
x_df: DataFrame,
y_df: DataFrame,
factors: tp.Sequence[str],
n_dims: int = 4,
algo_name: str = "PCA",
fit_lowess: bool = False,
palettes: tp.Mapping[str, Array] = None,
) -> Figure:
from seaborn_extensions.annotated_clustermap import to_color_series
from seaborn_extensions.annotated_clustermap import is_numeric
from statsmodels.nonparametric.smoothers_lowess import lowess
factors = [c for c in factors if c in y_df.columns]
n = len(factors)
fig, axes = plt.subplots(
n,
n_dims,
figsize=(4 * n_dims, 4 * n),
sharex="col",
sharey="col",
squeeze=False,
)
for i, factor in enumerate(factors):
numeric = is_numeric(y_df[factor])
try:
colors = pd.Series(palettes.get(factor), dtype="object").reindex(
y_df[factor].dropna().cat.codes
)
colors.index = y_df[factor].dropna().index
except AttributeError: # not a categorical
try:
colors = to_color_series(y_df[factor].dropna(), palettes.get(factor))
except (TypeError, ValueError):
colors = to_color_series(y_df[factor].dropna())
for pc in x_df.columns[:n_dims]:
ax = axes[i, pc]
if fit_lowess:
fit = lowess(x_df.loc[:, pc], x_df.loc[:, pc + 1], frac=1.0)
ax.plot(*fit.T, color="grey", linestyle="--")
if numeric:
m = ax.scatter(
x_df.loc[:, pc],
x_df.loc[:, pc + 1],
c=y_df[factor].astype(float),
cmap=cmaps.get(factor),
)
if pc == 0:
bb = ax.get_position()
cax = fig.add_axes((bb.xmax, bb.ymin, bb.width * 0.05, bb.height))
_ = fig.colorbar(m, label=factor, cax=cax)
else:
for value in y_df[factor].dropna().unique():
idx = y_df[factor].isin([value]) # to handle nan correctly
ax.scatter(
x_df.loc[idx, pc],
x_df.loc[idx, pc + 1],
c=colors.loc[idx] if not numeric else None,
cmap=cmaps.get(factor) if numeric else None,
label=value,
)
if pc == 0:
ax.legend(
title=factor,
loc="center right",
bbox_to_anchor=(-0.15, 0.5),
)
ax.set_ylabel(algo_name + str(pc + 2))
for i, ax in enumerate(axes[-1, :]):
ax.set_xlabel(algo_name + str(i + 1))
return fig