-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsctcrfuncs.py
331 lines (302 loc) · 13.3 KB
/
sctcrfuncs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 15 15:24:39 2015
Functions for single-cell TCRseq analysis for paired-end fastq data
@author:David Redmond (email [email protected])
"""
import sys, os, commands, csv, commands, operator, tempfile, subprocess, numpy
from itertools import groupby, count
from collections import Counter
from Bio.Blast import NCBIXML
def analysis_seq_vidjil(outlabel,outdir,speciesVidjilRef,vidjildir):
vidjil_cline=vidjildir+"vidjil-2015.10.2_x86_64 -c clones -r 1 -g "+speciesVidjilRef+" "+outdir+"/"+outlabel+"/"+outlabel+".gapfilled.final.fa -o "+outdir
os.system(vidjil_cline)
def create_gapFiller_libraries(myFastq1,myFastq2,outName,label,insertSize):
f=open(outName+".gapfiller.libraries.txt", 'w+')
gfFastq1=os.path.abspath(myFastq1)
gfFastq2=os.path.abspath(myFastq2)
print >> f, label+" bwa "+gfFastq1+" "+gfFastq2+" "+str(insertSize)+" 0.5 FR"
f.close()
def run_gapFiller(label,minCov,gapFillerDir,outdir):
myPrevDir=os.getcwd()
os.chdir(outdir)
gapFiller_cline = "perl "+gapFillerDir+"GapFiller.pl -l "+label+".gapfiller.libraries.txt"+" -s "+label+".Gapped.Targets.fa"+" -m 20 -o "+str(minCov/2)+" -r 0.7 -n 5 -d 50 -t 0 -g 2 -T 1 -i 3 -b "+label
os.system(gapFiller_cline)
os.chdir(myPrevDir)
def print_tcr_summary_log(myGene,geneType):
if is_empty(myGene):
return "No "+geneType+" detected at coverage level"
if type(myGene) is tuple:
return geneType+" detected:\n"+myGene[0]+"\nSequence:\n"+myGene[1][0]+"\nCoverage:\n"+str(myGene[1][1])+"\n"
else:
myText=""
for i in range(0, len(myGene)):
myText+=geneType+" detected:\n"+list(myGene)[i][0]+"\nSequence:\n"+list(myGene)[i][1][0]+"\nCoverage:\n"+str(list(myGene)[i][1][1])+"\n"
return myText
def is_empty(any_structure):
if any_structure:
return False
else:
return True
def create_gap_fill_to_be(geneV,geneC,trimSize,gapSize):
junctions=[]
myGap="N"*gapSize
if type(geneV) is tuple:
vFrag=geneV[1][0][:-trimSize]
cFrag=geneC[1][0][trimSize:]
junctions.append((geneV[0]+"."+geneC[0],vFrag+myGap+cFrag))
else:
for i in range(0, len(geneV)):
vFrag=list(geneV)[i][1][0][:-trimSize]
cFrag=geneC[1][0][trimSize:]
junctions.append((list(geneV)[i][0]+"."+geneC[0],vFrag+myGap+cFrag))
return junctions
#choose region with longest seq then highest coverage
def choose_coverage_region(myRegion):
result=[]
maxLen=0
maxCov=0
if type(myRegion) is tuple:
return myRegion
for i in range(0, len(myRegion)):
if len(myRegion[i][1][0]) > maxLen:
maxLen=len(myRegion[i][1][0])
result=myRegion[i]
maxCov=myRegion[i][1][1]
if(len(myRegion[i][1][0])) == maxLen:
if myRegion[i][1][1] > maxCov:
result=myRegion[i]
maxCov=myRegion[i][1][1]
return result
#count reads in fastq files
def count_total_reads(myFastq1,myFastq2):
result=int(commands.getoutput("zcat %s | wc -l" % myFastq1))
result+=int(commands.getoutput("zcat %s | wc -l" % myFastq2))
return result/4
def return_fastq_counts(myFastq1,myFastq2,outfile):
f1=open(outfile, 'w+')
print >>f1, count_total_reads(myFastq1,myFastq2)
f1.close()
#return median read legth of fasta file
def return_fastq_median_read_lengths(myFastq1,outfile,lengthScript):
cmd="zcat "+myFastq1+" | perl "+lengthScript+" - > "+outfile
os.system(cmd)
cmd="zcat "+myFastq1+" | perl "+lengthScript+" -"
return(int(os.popen(cmd).read()))
# gunzip fastq files
def gunzip_fastq(myFastq):
command="gunzip %s" % myFastq
os.system(command)
# gzip fastq files
def gzip_fastq(myFastq):
command="gzip -1 %s" % myFastq
os.system(command)
# Prepare fq files in format for blast mapping
def blast_fq_format(myFastq,outFastq):
#command="sed '3~4d;4~4d;s/@/>/g' "+myFastq+" > "+outFastq
command="zcat "+myFastq+" | sed '3~4d;4~4d;s/@/>/g' > "+outFastq
os.system(command)
#split fasta file into temporary files of 10k lines
def tempfile_split(filename, temp_dir, chunk=10**4):
fns={}
with open(filename, 'r') as datafile:
groups = groupby(datafile, key=lambda k, line=count(): next(line) // chunk)
for k, group in groups:
with tempfile.NamedTemporaryFile(delete=False,
dir=temp_dir,prefix='{}_'.format(str(k))) as outfile:
outfile.write(''.join(group))
fns[k]=outfile.name
return fns
#blast fastqs against ref tcr databases
def blastall_v_regions(myFastq1,myFastq2,myRef,outputfile,eVal,blastallDir):
fns={}
chunk=10**4
with open(myFastq1, 'r') as datafile1:
groups = groupby(datafile1, key=lambda k, line=count(): next(line) // chunk)
for k, group in groups:
with tempfile.NamedTemporaryFile(delete=False,
dir=tempfile.mkdtemp(),prefix='{}_'.format(str(k))) as outfile:
outfile.write(''.join(group))
fns[k]=outfile.name
blastn_cline = blastallDir+"blastall -p blastn -o "+str(outfile.name)+".blast.out -i "+str(outfile.name)+" -d "+myRef+" -e "+str(eVal)+" -m 8 -b 1"
os.system(blastn_cline+" > /dev/null 2>&1")
os.system("cat "+str(outfile.name)+".blast.out >> "+outputfile)
os.remove(str(outfile.name)+".blast.out")
os.remove(str(outfile.name))
testvar=commands.getstatusoutput("dirname "+str(outfile.name))
os.system("rm -r "+testvar[1])
fns={}
with open(myFastq2, 'r') as datafile2:
groups = groupby(datafile2, key=lambda k, line=count(): next(line) // chunk)
for k, group in groups:
with tempfile.NamedTemporaryFile(delete=False,
dir=tempfile.mkdtemp(),prefix='{}_'.format(str(k))) as outfile:
outfile.write(''.join(group))
fns[k]=outfile.name
blastn_cline = blastallDir+"blastall -p blastn -o "+str(outfile.name)+".blast.out -i "+str(outfile.name)+" -d "+myRef+" -e "+str(eVal)+" -m 8 -b 1"
os.system(blastn_cline+" > /dev/null 2>&1")
os.system("cat "+str(outfile.name)+".blast.out >> "+outputfile)
os.remove(str(outfile.name)+".blast.out")
os.remove(str(outfile.name))
testvar=commands.getstatusoutput("dirname "+str(outfile.name))
os.system("rm -r "+testvar[1])
def listToStringWithoutBrackets(list1):
return str(list1).replace('[','').replace(']','')
def run_seqtk(inputList,inputFastq1,inputFastq2,outputFastq,seqTkDir):
command1=seqTkDir+"seqtk subseq "+inputFastq1+" "+inputList+" >> "+outputFastq
command2=seqTkDir+"seqtk subseq "+inputFastq2+" "+inputList+" >> "+outputFastq
os.system(command1)
os.system(command2)
#main ftn to return V or C region counts and alignments for gapfiller processing
def return_counts_and_alignment(blastHitsFile,outName,fastq1,fastq2,seqTkDir,threshold,minBlastAlignedLength):
myHits=[]
with open(blastHitsFile) as f:
reader = csv.reader(f, delimiter="\t")
for row in reader:
if(int(row[3])>=minBlastAlignedLength):
myHits.append(row[1])
gene_table={}
gene_table=Counter(myHits)
perc_table={}
for gene in gene_table:
perc_table[gene]=float(gene_table[gene])/float(sum(gene_table.values()))
gene_table_output = { k: [ gene_table[k], perc_table[k] ] for k in gene_table }
sorted_gto = sorted(gene_table_output.items(), key=operator.itemgetter(1),reverse=True)
f1=open(outName+".counts.txt", 'w+')
for item in sorted_gto:
print >>f1, item[0],",",listToStringWithoutBrackets(item[1])
f1.close()
with open(blastHitsFile) as f:
reader = csv.reader(f, delimiter="\t")
d = list(reader)
myReads = [myReads[0:2] for myReads in d]
f2=open(blastHitsFile+".candidates.txt", 'w+')
for i in range(0,len(sorted_gto)):
if sorted_gto[i][1][1] > threshold:
for j in range(0,len(myReads)):
if myReads[j][1]==sorted_gto[i][0]:
print >> f2, myReads[j][0]
else:
next
f2.close()
run_seqtk(blastHitsFile+".candidates.txt",fastq1,fastq2,outName+".local.cands.fq",seqTkDir)
#blastall the major V and return XML ouput
def blast_single_v_region(myFastq,myRef,outfile,eVal,blastallDir):
tempFasta = tempfile_split(myFastq, tempfile.mkdtemp(), chunk=10**4)
for key, value in tempFasta.iteritems():
blastn_cline = blastallDir+"blastall -p blastn -o "+value+".blast.out -i "+value+" -d "+myRef+" -e "+str(eVal)+" -m 7 -b 1"
os.system(blastn_cline+" > /dev/null 2>&1")
os.system("cat "+value+".blast.out >> "+outfile)
os.remove(value+".blast.out")
os.remove(value)
def perform_targeted_alignment(candidateFile, outAlignment, candidateGene):
result=open(candidateFile,"r")
f=open(outAlignment, 'w+')
records=NCBIXML.parse(result)
for item in records:
for alignment in item.alignments:
if alignment.accession == candidateGene:
for hsp in alignment.hsps:
myAlignment="_"*(hsp.sbjct_start-1)
myAlignment=myAlignment+hsp.query[0:190]
myAlignment=myAlignment+"_"*(alignment.length-len(myAlignment))
print >> f, (myAlignment)
f.close()
result.close()
#create pileup of reads mapping to particular V or C
def return_consensus(alignmentFile,minCov):
with open(alignmentFile,"rt") as infile:
matrix = [list(line.strip()) for line in infile.readlines()]
transpose=[list(x) for x in zip(*matrix)]
vGeneA=[]
vGeneC=[]
vGeneG=[]
vGeneT=[]
for i in range(0,len(transpose)):
vGeneA.append(transpose[i].count("A"))
vGeneC.append(transpose[i].count("C"))
vGeneG.append(transpose[i].count("G"))
vGeneT.append(transpose[i].count("T"))
vGeneCoverage=[]
vGeneCoverage=[a + b + c + d for a, b, c, d in zip(vGeneA, vGeneC, vGeneG, vGeneT)]
vGeneAlignment={}
vGeneAlignment={"A":vGeneA,"C":vGeneC,"G":vGeneG,"T":vGeneT}
vGeneConsensus=[]
vGeneConsensusCoverage=[]
for i in range(0,len(vGeneAlignment["A"])):
consensusCount=0
consensusBase="N"
for base in vGeneAlignment:
if(vGeneAlignment[base][i] > consensusCount):
consensusCount = vGeneAlignment[base][i]
consensusBase = base
vGeneConsensus.append(consensusBase)
vGeneConsensusCoverage.append(consensusCount)
oldsubseq = []
newsubseq = []
for i in range(0,len(vGeneConsensus)):
if (vGeneConsensusCoverage[i] > minCov):
newsubseq.append(vGeneConsensus[i])
else:
if (len(newsubseq) > len(oldsubseq)):
oldsubseq = newsubseq
newsubseq = []
#vGeneTarget=max(oldsubseq,newsubseq)
if len(oldsubseq) >= len(newsubseq):
vGeneTarget=oldsubseq
else:
vGeneTarget=newsubseq
return ("".join(vGeneTarget),numpy.mean(vGeneConsensusCoverage))
def compare_alignments(candGene):
if len(candGene) == 2:
return(compare_agg(candGene))
else:
temp1=map(candGene.__getitem__, (0,1))
temp2=map(candGene.__getitem__, (0,2))
temp3=map(candGene.__getitem__, (1,2))
temp1=compare_agg(temp1)
temp2=compare_agg(temp2)
temp3=compare_agg(temp3)
###ADDED IN
if type(temp1) is tuple:
temp1=list("")
if type(temp2) is tuple:
temp2=list("")
if type(temp3) is tuple:
temp3=list("")
#END OF ADDIN
return(set(temp1+temp2+temp3))
def compare_agg(candGene):
if candGene[1][1][0] in candGene[0][1][0]:
return candGene[0]
elif candGene[0][1][0] in candGene[1][1][0]:
return candGene[1]
else:
return candGene
def get_variable_regions(myFastq1,myFastq2,myRef,outName,minCov,eVal,blastallDir,seqTkDir,threshold,minBlastAlignedLength):
blastall_v_regions(myFastq1,myFastq2,myRef,outName+".matches.txt",eVal,blastallDir)
return_counts_and_alignment(outName+".matches.txt",outName,myFastq1,myFastq2,seqTkDir,threshold,minBlastAlignedLength)
blast_single_v_region(outName+".local.cands.fq",myRef,outName+".matches.xml",eVal,blastallDir)
candGene=[]
with open(outName+".counts.txt", 'r') as csvfile:
reader = csv.reader(csvfile)
table = [[e for e in r] for r in reader]
for i in range(0, len(table)):
if float(table[i][2]) > threshold:
myCand=table[i][0]
candGene.append(myCand.strip())
for i in range(0, len(candGene)):
perform_targeted_alignment(outName+".matches.xml", outName+"."+str(candGene[i]).replace("/","")+".aln", candGene[i])
try:
candGene[i]=(candGene[i],return_consensus(outName+"."+str(candGene[i]).replace("/","")+".aln",minCov))
except Exception:
pass
for i in candGene[:]:
if len(i) != 2:
candGene.remove(i)
for i in candGene:
if numpy.isnan(float(i[1][1])):
candGene.remove(i)
if len(candGene) > 1:
candGene=compare_alignments(candGene)
return candGene