-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathconvert_to_csv.py
192 lines (169 loc) · 8.82 KB
/
convert_to_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import argparse
from pylab import *
import pandas as pd
def read_transformer_logfile(logfile_name):
all_values = []
value_labels = ["num_attention_heads", "hidden_size", "train_micro_batch_size_per_gpu", "seq_length", "vocab_size", "train_batch_size", "tensor_mp_size", "pipeline_mp_size", "dp_size"]
with open(logfile_name, 'r') as f:
reading_estimate = False
for line in f:
line = line.strip()
if line == "Estimate":
reading_estimate = True
elif line == "Actual":
reading_estimate = False
match = re.match(r'num_attention_heads: (\d+), hidden_size: (\d+), '
r'train_micro_batch_size_per_gpu: (\d+), seq_length: (\d+), '
r'vocab_size: (\d+), train_batch_size: (\d+), '
r'tensor_mp_size: (\d+), pipeline_mp_size: (\d+), '
r'dp_size: (\d+)', line)
if match is not None:
values = {}
for i in range(1, 10):
values[value_labels[i-1]] = int(match.group(i))
all_values.append(values)
match = re.match(r'Throughput \(in TFLOP/s\) for qkv_transform \((.*)\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(2))
if reading_estimate:
all_values[-1]["attention_key_value_query_transform"] = throughput
match = re.match(r'Throughput \(in TFLOP/s\) for attention_score \((.*)\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(2))
if reading_estimate:
all_values[-1]["attention_key_query_prob"] = throughput
match = re.match(r'Throughput \(in TFLOP/s\) for attention_over_value \((.*)\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(2))
if reading_estimate:
all_values[-1]["attention_prob_times_values"] = throughput
match = re.match(r'Throughput \(in TFLOP/s\) for attention_dropout \((.*)\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(2))
if reading_estimate:
all_values[-1]["attention_dropout"] = throughput
match = re.match(r'Elapsed time for attention_softmax \((.*)\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(2))
if reading_estimate:
all_values[-1]["attention_softmax"] = throughput
match = re.match(r'Throughput \(in TFLOP/s\) for attention_linear_projection \((.*)\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(2))
if reading_estimate:
all_values[-1]["attention_linear_projection"] = throughput
match = re.match(r'Throughput \(in TFLOP/s\) for mlp_h_to_4h \((.*)\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(2))
if reading_estimate:
all_values[-1]["mlp_h_to_4h"] = throughput
match = re.match(r'Throughput \(in TFLOP/s\) for mlp_4h_to_h \((.*)\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(2))
if reading_estimate:
all_values[-1]["mlp_4h_to_h"] = throughput
match = re.match(r'Elapsed time for mlp_fused_gelu \((.*)\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(2))
if reading_estimate:
all_values[-1]["mlp_fused_gelu"] = throughput
match = re.match(r'Elapsed time for transformer_add_bias_dropout \((.*)\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(2))
if reading_estimate:
all_values[-1]["transformer_add_bias_dropout"] = throughput
match = re.match(r'Elapsed time for transformer_layer_norm \((.*)\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(2))
if reading_estimate:
all_values[-1]["transformer_layer_norm"] = throughput
match = re.match(r'Throughput \(in TFLOP/s\) for logit_block \((.*)\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(2))
if reading_estimate:
all_values[-1]["logit_block"] = throughput
match = re.match(r'Attention duration \(in seconds\): (\d+\.\d+)', line)
if match is not None:
duration = float(match.group(1))
if reading_estimate:
all_values[-1]["estimated_attention_duration"] = duration
else:
all_values[-1]["actual_attention_duration"] = duration
match = re.match(r'Attention throughput \(in TFLOP/s\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(1))
if reading_estimate:
all_values[-1]["estimated_attention_throughput"] = throughput
else:
all_values[-1]["actual_attention_throughput"] = throughput
match = re.match(r'MLP duration \(in seconds\): (\d+\.\d+)', line)
if match is not None:
duration = float(match.group(1))
if reading_estimate:
all_values[-1]["estimated_mlp_duration"] = duration
else:
all_values[-1]["actual_mlp_duration"] = duration
match = re.match(r'MLP throughput \(in TFLOP/s\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(1))
if reading_estimate:
all_values[-1]["estimated_mlp_throughput"] = throughput
else:
all_values[-1]["actual_mlp_throughput"] = throughput
match = re.match(r'Transformer duration \(in seconds\): (\d+\.\d+)', line)
if match is not None:
duration = float(match.group(1))
if reading_estimate:
all_values[-1]["estimated_duration"] = duration
else:
all_values[-1]["actual_duration"] = duration
match = re.match(r'Transformer throughput \(in TFLOP/s\): (\d+\.\d+)', line)
if match is not None:
throughput = float(match.group(1))
if reading_estimate:
all_values[-1]["estimated_throughput"] = throughput
else:
all_values[-1]["actual_throughput"] = throughput
return all_values
def read_mm_logfile(logfile_name):
throughputs = []
with open(logfile_name, 'r') as f:
for line in f:
line = line.strip()
match = re.match(r'Throughput \(in TFLOP/s\) for (\d+)x(\d+)x(\d+): (\d+\.\d+)', line)
if match is not None:
m, n, k = int(match.group(1)), int(match.group(2)), int(match.group(3))
throughput = float(match.group(4))
throughputs.append({'m': m, 'n': n, 'k': k,
'throughput': throughput})
return throughputs
def read_bmm_logfile(logfile_name):
throughputs = []
with open(logfile_name, 'r') as f:
for line in f:
line = line.strip()
match = re.match(r'Throughput \(in TFLOP/s\) for bmm \((\d+)x(\d+)x(\d+)x(\d+)\): (\d+\.\d+)', line)
if match is not None:
b, m, n, k = int(match.group(1)), int(match.group(2)), int(match.group(3)), int(match.group(4))
throughput = float(match.group(5))
throughputs.append({'b': b, 'm': m, 'n': n, 'k': k,
'throughput': throughput})
return throughputs
def to_pandas(filename):
all_values_transformer = read_transformer_logfile(filename)
all_values_mm = read_mm_logfile(filename)
all_values_bmm = read_bmm_logfile(filename)
if len(all_values_transformer) > 0:
df = pd.DataFrame(all_values_transformer)
elif len(all_values_mm) > 0:
df = pd.DataFrame(all_values_mm)
else:
df = pd.DataFrame(all_values_bmm)
return df
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--file_name", type=str, help="Input log file")
parser.add_argument("--output_file", type=str, help="Output csv file")
args = parser.parse_args()
df = to_pandas(args.file_name)
df.to_csv(args.output_file, index=False)