-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodel.py
577 lines (490 loc) · 23.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# coding: utf-8
import os, inspect
from typing import *
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import torch.functional as F
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from modules import Transformer_XL
from utils.exp_utils import logging
from utils.utils import GlobalState
###############################################################################
##
## Helper functions
##
def update_dropout(global_state: GlobalState, m):
classname = m.__class__.__name__
if classname.find("Dropout") != -1:
if hasattr(m, "p"):
m.p = global_state.dropout
if hasattr(m, "dropout_p"):
m.dropout_p = global_state.dropout_attn
def update_dropatt(global_state: GlobalState, m):
if hasattr(m, "dropatt"):
m.dropout_attn.p = global_state.dropout_attn
if hasattr(m, "dropatt_p"):
m.dropatt_p = global_state.dropout_attn
################################################################################
##
## Dataset class
##
class IterableTimeSeries(Dataset):
def __init__(self, global_state: GlobalState, data, mode="train",
debug=False):
super(IterableTimeSeries, self).__init__()
self.global_state = global_state
self.data_type = mode
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Creating dataloader for data set: {mode}")
# In debug mode, only use about 2 epoch of input
# TODO refactor to use exactly 2 epoch instead of 700 dates.
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
total_data_set_length = min(global_state.dataset_size, data.size(0))
else:
total_data_set_length = data.size(0)
# The beginning of the data set is where 'train' starts
# The end of the dataset is here we find the last testing data
# We therefore start at 0
# And end at total_data_set_length = n_samples + (n_model+1) + n_val + n_test
# (a sample is n_model vectors for X and 1 vector for Y)
# Final -1 is to reflect Python's 0-array convention
self.n_samples = total_data_set_length - \
(global_state.n_model + 1) - \
global_state.n_val - \
global_state.n_test - \
1
# Adjust the start of the dataset for training / val / test
if mode == "train":
start_index = 0
end_index = (global_state.n_model + 1) + self.n_samples
elif mode == "val":
start_index = self.n_samples
end_index = (global_state.n_model + 1) + self.n_samples + \
global_state.n_val
elif mode == "test":
start_index = self.n_samples + global_state.n_val
end_index = (global_state.n_model + 1) + self.n_samples + \
global_state.n_val + \
global_state.n_test
# This is the actual input on which to iterate
self.data = data[start_index:end_index, :]
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Dataset {self.data_type} - Start index: {start_index}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Dataset {self.data_type} - End index: {end_index}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Dataset {self.data_type} - data: {self.data.size()}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Dataset {self.data_type} - data set iterator"
f" length: {self.data.size()[0]}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Dataset {self.data_type} - calculated"
f" n_samples: {self.n_samples}")
# d_series is the depth of a series (how many input points per dates)
# n_series is the number of series (how many dates)
self.n_series, self.d_series = data.size()
def __getitem__(self, index):
# An item is a tuple of:
# - a transformer_model input being, say, 60 dates of time series
# - the following date as expected output
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" {self.data_type} \t item no.: {index}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" x: from {index} to {index + self.global_state.n_model}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" y: at {index + self.global_state.n_model}")
return (self.data[index: index + self.global_state.n_model, :],
self.data[index + self.global_state.n_model, :])
def __len__(self):
"""
Total number of samples in the dataset
"""
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Call to __len__() on {self.data_type} returning"
f" self.data.size()[0] - (self.global_state.n_model + 1) ="
f" {self.data.size()[0] - (self.global_state.n_model + 1)}")
return self.data.size()[0] - (self.global_state.n_model + 1)
################################################################################
##
## Lightning module of the transformer_model
##
class TransformerXL_Trainer(pl.LightningModule):
def __init__(self, global_state: GlobalState):
super(TransformerXL_Trainer, self).__init__()
self.global_state = global_state
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"")
logging(f"")
logging(f"########################################################"
f"########################################################")
logging(f"########################################################"
f"########################################################")
logging(f"")
logging(f" INITIALISING TRANSFORMER XL")
logging(f"")
logging(f"########################################################"
f"########################################################")
logging(f"########################################################"
f"########################################################")
logging(f"")
self.transformer_model = Transformer_XL(
n_layer=global_state.n_layer,
d_hidden=global_state.d_hidden,
d_pos_enc=global_state.d_pos_enc,
n_head=global_state.n_head,
d_head=global_state.d_head,
d_FF_inner=global_state.d_FF_inner,
d_model=global_state.d_model,
dropout=global_state.dropout,
dropout_attn=global_state.dropout_attn,
n_model=global_state.n_model,
n_mems=global_state.n_mems,
debug=global_state.debug,
skip_debug=global_state.skip_debug)
self.loss_function = nn.MSELoss()
############################################################################
#
# STEP 1: Define the transformer_model
#
############################################################################
def forward(self, input: torch.FloatTensor, output: torch.FloatTensor,
*mems):
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"")
logging(f"")
logging(f"########################################################")
logging(f"")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" input: {input.size()}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" output: {output.size()}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" mems: {len(mems)}")
return self.transformer_model(input, output, *mems)
############################################################################
##
## STEP 2: Prepare a dataset that will be available to the dataloaders
##
############################################################################
# prepare_data() makes sure that input is available for training
# We assume that input was downloaded, save as a pickle, NaN not changed yet.
# The input loaders will: create clean input set with NaN -> 0 and remove the input index
# WARNING Change when using market indices as well as returns (cannot fill
# NaN indices with 0)
def prepare_data(self) -> None:
data_set = pd.read_pickle(
f"{self.global_state.data_dir}/allData.pickle")
# Does nothing.
data_set.to_pickle(f"{self.global_state.data_dir}/allDataClean.pickle")
return None
############################################################################
#
# STEP 3: Configure the optimizer (how to use the input in the transformer_model)
#
############################################################################
#
# STEP 3.1: Build an optimizer
#
def build_optimizer(self, reload=False):
if self.global_state.optim.lower() == "sgd":
optimizer = optim.SGD(
self.transformer_model.parameters(),
lr=self.global_state.lr,
momentum=self.global_state.mom,
)
elif self.global_state.optim.lower() == "adam":
optimizer = optim.Adam(params=self.transformer_model.parameters(),
lr=self.global_state.lr)
elif self.global_state.optim.lower() == "adagrad":
optimizer = optim.Adagrad(self.transformer_model.parameters(),
lr=self.global_state.lr)
else:
raise ValueError(
f"optimizer type {self.global_state.optim} not recognized")
if reload:
if self.global_state.restart_from is not None:
optim_name = f"optimizer_{self.global_state.restart_from}.pt"
else:
optim_name = "optimizer.pt"
optim_file_name = os.path.join(self.global_state.restart_dir,
optim_name)
logging(f"reloading {optim_file_name}")
if os.path.exists(
os.path.join(self.global_state.restart_dir, optim_name)):
with open(
os.path.join(self.global_state.restart_dir, optim_name),
"rb"
) as optim_file:
opt_state_dict = torch.load(optim_file)
try:
optimizer.load_state_dict(opt_state_dict)
# in case the optimizer param groups aren't the same shape,
# merge them
except:
logging("merging optimizer param groups")
opt_state_dict["param_groups"][0]["params"] = [
param
for param_group in opt_state_dict["param_groups"]
for param in param_group["params"]
]
opt_state_dict["param_groups"] = [
opt_state_dict["param_groups"][0]
]
optimizer.load_state_dict(opt_state_dict)
else:
logging("Optimizer was not saved. Start from scratch.")
return optimizer
#
# STEP 3.2: Build a scheduler
#
def build_scheduler(self, optimizer):
if self.global_state.scheduler == "cosine":
# here we do not set eta_min to lr_min to be backward compatible
# because in previous versions eta_min is default to 0
# rather than the default value of lr_min 1e-6
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer,
self.global_state.max_step,
eta_min=self.global_state.eta_min,
)
elif self.global_state.scheduler == "inv_sqrt":
# originally used for Transformer (in Attention is all you need)
def lr_lambda(step):
# return a multiplier instead of a learning rate
if step == 0 and self.global_state.warmup_step == 0:
return 1.0
else:
return (
1.0 / (step ** 0.5)
if step > self.global_state.warmup_step
else step / (self.global_state.warmup_step ** 1.5)
)
scheduler = optim.lr_scheduler.LambdaLR(optimizer,
lr_lambda=lr_lambda)
elif self.global_state.scheduler == "dev_perf":
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer=optimizer,
factor=self.global_state.decay_rate,
patience=self.global_state.patience,
min_lr=self.global_state.min_lr,
)
elif self.global_state.scheduler == "constant":
pass
else:
raise ValueError(
f"scheduler type {self.global_state.scheduler} not recognized"
)
return scheduler
#
# STEP 3.3: Combine the two
#
def configure_optimizers(self):
optimizer = self.build_optimizer()
# TODO: adding a scheduler throws errors. Check
# scheduler = self.build_scheduler(optimizer=optimizer)
# return optimizer, scheduler
return optimizer
############################################################################
#
# STEP 4: How to train the transformer_model: first a dalaloader, the how to train
#
############################################################################
def train_dataloader(self):
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Creating dataloader train")
data_set = pd.read_pickle(
f"{self.global_state.data_dir}/allData.pickle")
data_set = data_set.fillna(0.0).values[:, 1:].astype(np.float32)
data_set = torch.tensor(data_set)
dataloader = DataLoader(
IterableTimeSeries(self.global_state, data_set, mode="train"),
batch_size=self.global_state.n_batch,
num_workers=self.global_state.num_workers, drop_last=True
)
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Dataloader length: {len(dataloader)}")
return dataloader
def training_step(self, batch: List[torch.Tensor], batch_idx: int,
optimizer_idx: int = 1):
# DIMS: batch = (x, y)
# DIMS: x -> (n_batch, n_model, d_model)
# DIMS: y -> (n_batch, d_model)
x, y = batch
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" x = batch[0]: {batch[0].size()}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" y = batch[1]: {batch[1].size()}")
y_hat = self.forward(x, y)
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" y_hat['loss']: {y_hat['loss'].size()}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" y_hat['layer_out']: {y_hat['layer_out'].size()}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" y_hat['memory'][0]: {y_hat['memory'][0].size()}")
loss = self.loss_function(y_hat['layer_out'][:, -1, :], y)
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" loss: {loss.size()}")
loss = loss.unsqueeze(dim=-1)
return {"loss": loss}
############################################################################
#
# STEP 5: Then validate on a validation set dataloader (can be OPTIONAL)
#
############################################################################
def val_dataloader(self):
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Creating dataloader val")
data_set = pd.read_pickle(
f"{self.global_state.data_dir}/allData.pickle")
data_set = data_set.fillna(0.0).values[:, 1:].astype(np.float32)
data_set = torch.tensor(data_set)
# Note that batches have size 1!
dataloader = DataLoader(
IterableTimeSeries(self.global_state, data_set, mode="val"),
batch_size=1,
num_workers=self.global_state.num_workers, drop_last=True
)
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Dataloader length: {len(dataloader)}")
return dataloader
def validation_step(self, batch, batch_nb):
# DIMS: batch = (x, y)
# DIMS: x -> (n_batch, n_model, d_model)
# DIMS: y -> (n_batch, d_model)
x, y = batch
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" x = batch[0]: {batch[0].size()}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" y = batch[1]: {batch[1].size()}")
y_hat = self.forward(x, y)
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" y_hat['loss']: {y_hat['loss'].size()}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" y_hat['layer_out']: {y_hat['layer_out'].size()}")
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" y_hat['memory'][0]: {y_hat['memory'][0].size()}")
val_loss = self.loss_function(y_hat['layer_out'][:, -1, :], y)
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" loss: {val_loss.size()}")
val_loss = val_loss.unsqueeze(dim=-1)
return {"val_loss": val_loss}
def validation_end(self, outputs):
avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean()
return {"val_loss": avg_loss}
def validation_epoch_end(self, outputs):
avg_loss = torch.stack([output['val_loss'] for output in outputs]).mean()
tensorboard_logs = {'val_loss': avg_loss}
return {'val_loss': avg_loss, 'log': tensorboard_logs}
############################################################################
#
# STEP 6: Finally test the transformer_model
#
############################################################################
def test_dataloader(self):
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Creating dataloader train")
data_set = pd.read_pickle(
f"{self.global_state.data_dir}/allData.pickle")
data_set = data_set.fillna(0.0).values[:, 1:].astype(np.float32)
data_set = torch.tensor(data_set)
# Note that batches have size 1!
dataloader = DataLoader(
IterableTimeSeries(self.global_state, data_set, mode="test"),
batch_size=1,
num_workers=self.global_state.num_workers, drop_last=True
)
if self.global_state.debug and (
self.__class__.__name__ not in self.global_state.skip_debug):
logging(f"{self.__class__.__name__}, "
f"{inspect.currentframe().f_code.co_name}: "
f" Dataloader length: {len(dataloader)}")
return dataloader
def test_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
return {"test_loss": loss}
def test_epoch_end(self, outputs):
avg_loss = torch.stack([output['test_loss'] for output in outputs]).mean()
tensorboard_logs = {'avg_test_loss': avg_loss}
return {'avg_test_loss': avg_loss, 'log': tensorboard_logs}
################################################################################
#
# Checkpoint callback to save best 3 models
#
checkpoint_callback = ModelCheckpoint(
filepath="./experiments/checkpoints/etf",
save_top_k=3,
verbose=True,
monitor="avg_val_loss",
mode="min",
)