-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
203 lines (148 loc) · 8.97 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from torch.utils.tensorboard import SummaryWriter
from model import TransformerModel
from dataset import BilingualDataset, casual_mask
from configuration import Get_configuration, Get_weights_file_path, latest_weights_file_path
from datasets import load_dataset
from tokenizers import Tokenizer
from tokenizers.models import WordLevel
from tokenizers.pre_tokenizers import Whitespace
from tokenizers.trainers import WordLevelTrainer
from pathlib import Path
import warnings
from tqdm import tqdm
import os
# def greedy_search(model, source, source_mask, source_tokenizer, target_tokenizer, max_len, device):
# sos_idx = target_tokenizer.token_to_id('[SOS]')
# eos_idx = target_tokenizer.token_to_id('[EOS]')
# encoder_output = model.encode(source, source_mask)
# decoder_input = torch.empty(1, 1).fill_(sos_idx).type_as(source).to(device)
# while True:
# if decoder_input.size(1) == max_len:
# break
# decoder_mask = casual_mask(decoder_input.size(1)).type_as(source_mask).to(device)
# out = model.decode(encoder_output, source_mask, decoder_input, decoder_mask)
# # get next token (get the token with the maximum probabilty)
# prob = model.linear(out[:, -1])
# _, next_word = torch.max(prob, dim=1)
# decoder_input = torch.cat(
# [decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(device)], dim=1
# )
# if next_word == eos_idx:
# break
# return decoder_input.squeeze(0)
def run_validation(model, validation_ds, source_tokenizer, target_tokenizer, max_len, device, print_msg, global_step, writer, num_examples=2):
model.eval()
count = 0
console_width = 80
with torch.no_grad():
for batch in validation_ds:
count += 1
encoder_input = batch["encoder_input"].to(device)
encoder_mask = batch["encoder_input_mask"].to(device)
assert encoder_input.size(0) == 1, "Batch size must be 1 for validation"
model_out = greedy_search(model, encoder_input, encoder_mask, source_tokenizer, target_tokenizer, max_len, device)
source_text = batch["target_text"][0]
target_text = batch["target_text"][0]
model_out_text = target_tokenizer.decode(model_out.detach().cpu().numpy())
print_msg('-'*console_width)
print_msg(f"{f'SOURCE: ':>12}{source_text}")
print_msg(f"{f'TARGET: ':>12}{target_text}")
print_msg(f"{f'PREDICTED: ':>12}{model_out_text}")
if count == num_examples:
break
def Get_All_Sentences(dataset, language):
for lang in dataset:
yield lang['translation'][language]
def Build_Tokenizer(configuration, dataset, language):
tokenizer_path = Path(configuration['tokenizer_file'].format(language))
if not Path.exists(tokenizer_path):
tokenizer = Tokenizer(WordLevel(unk_token= "[UNK]"))
tokenizer.pre_tokenizer = Whitespace()
trainer = WordLevelTrainer(special_tokens = ["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency = 2)
tokenizer.train_from_iterator(Get_All_Sentences(dataset, language), trainer=trainer)
tokenizer.save(str(tokenizer_path))
else:
tokenizer = Tokenizer.from_file(str(tokenizer_path))
return tokenizer
def Get_dataset(configuration):
dataset_Raw = load_dataset(f"{configuration['datasource']}", f"{configuration['source_language']}-{configuration['target_language']}", split="train")
source_tokenizer = Build_Tokenizer(configuration, dataset_Raw, configuration['source_language'])
target_tokenizer = Build_Tokenizer(configuration, dataset_Raw, configuration['target_language'])
train_dataset_Size = int(0.9 * len(dataset_Raw))
validation_dataset_Size = len(dataset_Raw) - train_dataset_Size
train_dataset_Raw, validation_dataset_Raw = random_split(dataset_Raw, [train_dataset_Size, validation_dataset_Size])
train_dataset = BilingualDataset(train_dataset_Raw, source_tokenizer, target_tokenizer, configuration['source_language'], configuration['target_language'], configuration['sequence_length'])
validation_dataset = BilingualDataset(validation_dataset_Raw, source_tokenizer, target_tokenizer, configuration['source_language'], configuration['target_language'], configuration['sequence_length'])
maximum_source_sequence_length = 0
maximum_target_sequence_length = 0
for item in dataset_Raw:
source_id = source_tokenizer.encode(item['translation'][configuration['source_language']]).ids
target_id = target_tokenizer.encode(item['translation'][configuration['target_language']]).ids
maximum_source_sequence_length = max(maximum_source_sequence_length, len(source_id))
maximum_target_sequence_length = max(maximum_target_sequence_length, len(target_id))
print(f"maximum_source_sequence_length : {maximum_source_sequence_length}")
print(f"maximum_target_sequence_length: {maximum_target_sequence_length}")
train_dataLoader = DataLoader(train_dataset, batch_size= configuration['batch_size'], shuffle=True)
validation_dataLoader = DataLoader(validation_dataset, batch_size= 1, shuffle=True)
return train_dataLoader, validation_dataLoader, source_tokenizer, target_tokenizer
def Get_model(configuration, source_vocab_size, target_vocab_size):
model = TransformerModel(source_vocab_size, target_vocab_size, configuration['sequence_length'], configuration['sequence_length'], configuration['d_model'])
return model
def train_model(configuration):
device = "cuda" if torch.cuda.is_available() else "mps" if torch.has_mps or torch.backends.mps.is_available() else "cpu"
print("Using device:", device)
Path(f"{configuration['datasource']}_{configuration['model_folder']}").mkdir(parents=True, exist_ok=True)
train_dataLoader, validation_dataLoader, source_tokenizer, target_tokenizer = Get_dataset(configuration)
model = Get_model(configuration, source_tokenizer.get_vocab_size(), target_tokenizer.get_vocab_size()).to(device)
writer = SummaryWriter(configuration['experiment_name'])
optimizer = torch.optim.Adam(model.parameters(), lr=configuration['lr'], eps=1e-9)
initial_epoch = 0
global_step = 0
preload = configuration['preload']
model_filename = latest_weights_file_path(configuration) if preload == 'latest' else Get_weights_file_path(configuration, preload) if preload else None
if model_filename:
print(f'Preloading model {model_filename}')
state = torch.load(model_filename)
model.load_state_dict(state['model_state_dict'])
initial_epoch = state['epoch'] + 1
optimizer.load_state_dict(state['optimizer_state_dict'])
global_step = state['global_step']
else:
print('No model to preload, starting from scratch')
loss_fn = nn.CrossEntropyLoss(ignore_index=source_tokenizer.token_to_id('[PAD]'), label_smoothing=0.1).to(device)
for epoch in range(initial_epoch, configuration['num_epochs']):
torch.cuda.empty_cache()
batch_iterator = tqdm(train_dataLoader, desc=f"Processing Epoch {epoch:02d}")
for batch in batch_iterator:
model.train()
encoder_input = batch['encoder_input'].to(device)
decoder_input = batch['decoder_input'].to(device)
encoder_mask = batch['encoder_input_mask'].to(device)
decoder_mask = batch['encoder_input_mask'].to(device)
encoder_output = model.encode(encoder_input, encoder_mask)
decoder_output = model.decode(encoder_output, encoder_mask, decoder_input, decoder_mask)
proj_output = model.linear(decoder_output)
Target = batch['Target'].to(device)
loss = loss_fn(proj_output.view(-1, target_tokenizer.get_vocab_size()), Target.view(-1))
batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"})
writer.add_scalar('train loss', loss.item(), global_step)
writer.flush()
loss.backward()
optimizer.step()
optimizer.zero_grad(set_to_none=True)
# run_validation(model, validation_dataLoader, source_tokenizer, target_tokenizer, configuration['sequence_length'], device, lambda msg: batch_iterator.write(msg), global_step, writer)
global_step += 1
model_filename = Get_weights_file_path(configuration, f"{epoch:02d}")
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'global_step': global_step
}, model_filename)
if __name__ == '__main__':
warnings.filterwarnings("ignore")
configuration = Get_configuration()
train_model(configuration)