-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
193 lines (159 loc) · 5.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import argparse
import time
import networkx as nx
import numpy as np
import torch
import torch.optim as optim
from torch_geometric.datasets import TUDataset
from torch_geometric.datasets import Planetoid
from torch_geometric.data import DataLoader
import torch_geometric.transforms as T
import torch_geometric.nn as pyg_nn
from matplotlib import pyplot as plt
import models
import utils
import os
import sys
sys.argv=['']
del sys
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# get the device to run
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def arg_parse():
parser = argparse.ArgumentParser(description='GNN arguments.')
utils.parse_optimizer(parser)
parser.add_argument('--model_type', type=str, help='Type of GNN model.')
parser.add_argument('--batch_size', type=int, help='Training batch size')
parser.add_argument('--num_layers', type=int, help='Number of graph conv layers')
parser.add_argument('--hidden_dim', type=int, help='Training hidden size')
parser.add_argument('--dropout', type=float, help='Dropout rate')
parser.add_argument('--epochs', type=int, help='Number of training epochs')
parser.add_argument('--dataset', type=str, help='Dataset')
parser.set_defaults(
model_type='GCN',
dataset='cora',
num_layers=2,
batch_size=32,
hidden_dim=16,
dropout=0.5,
epochs=200,
opt='adam', # opt_parser
opt_scheduler='none',
weight_decay=0,
lr=0.01)
return parser.parse_args()
def train(dataset, task, args):
if task == 'graph':
data_size = len(dataset)
loader = DataLoader(dataset[:int(data_size * 0.8)], batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(dataset[int(data_size * 0.8):], batch_size=args.batch_size, shuffle=True)
elif task == 'node':
test_loader = loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
else:
raise RuntimeError('Unknown task')
# build model
model = models.GNNStack(dataset.num_node_features, args.hidden_dim, dataset.num_classes, args, task=task)
model.to(device)
scheduler, opt = utils.build_optimizer(args, model.parameters())
# train
vals = []
tests = []
best_val_acc = 0
test_acc = 0
early_stop = 1e9
stop_cnt = 0
for epoch in range(1, args.epochs + 1):
total_loss = 0
model.train()
for batch in loader:
batch.to(device)
opt.zero_grad()
pred = model(batch)
label = batch.y
if task == 'node':
pred = pred[batch.train_mask]
label = label[batch.train_mask]
loss = model.loss(pred, label)
loss.backward()
opt.step()
total_loss += loss.item() * batch.num_graphs
total_loss /= len(loader.dataset)
val_acc, tmp_test_acc = test(loader, model, is_validation=True), test(loader, model)
vals.append(val_acc)
tests.append(tmp_test_acc)
if val_acc > best_val_acc:
best_val_acc = val_acc
test_acc = tmp_test_acc
stop_cnt = 0
else:
stop_cnt += 1
print("Epoch {:03d}: Loss : {:.4f}. ".format(epoch, total_loss), end="")
print("validation accuracy {:.4f}, test accuracy {:.4f}".format(best_val_acc, test_acc))
if stop_cnt >= early_stop:
break
print('Best validation accuracy {0}, test accuracy {1}'.format(best_val_acc, test_acc))
return list(range(1, args.epochs + 1)), vals
def test(loader, model, is_validation=False):
model.eval()
correct = 0
for data in loader:
data.to(device)
with torch.no_grad():
pred = model(data).max(dim=1)[1]
label = data.y
if model.task == 'node':
mask = data.val_mask.cpu() if is_validation else data.test_mask.cpu()
pred = pred[mask].cpu()
label = data.y[mask].cpu()
correct += pred.eq(label).sum().item()
if model.task == 'graph':
total = len(loader.dataset)
else:
total = 0
for data in loader.dataset:
total += torch.sum(data.test_mask).item() if not is_validation else torch.sum(data.val_mask).item()
return correct / total
def main():
args = arg_parse()
args.dataset = "cora"
args.dropout = 0
args.epochs = 800
if args.dataset == 'enzymes':
dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES')
task = 'graph'
elif args.dataset == 'cora':
dataset = Planetoid(root='/tmp/Cora', name='Cora')
task = 'node'
print('GCN:')
gcn_epoch, gcn_vals = train(dataset, task, args)
plt.plot(gcn_epoch, gcn_vals, label="GCN", color='g')
plt.title("Validation Accuracy vs Epochs on cora Dataset")
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.legend()
plt.grid(True)
plt.show()
print('GraphSage:')
args.model_type = "GraphSage"
args.hidden_dim = 256
gcn_epoch, gcn_vals = train(dataset, task, args)
plt.plot(gcn_epoch, gcn_vals, label="GraphSage", color='g')
plt.title("Validation Accuracy vs Epochs on cora Dataset")
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.legend()
plt.grid(True)
plt.show()
print('GAT:')
args.model_type = "GAT"
args.hidden_dim = 16
gcn_epoch, gcn_vals = train(dataset, task, args)
plt.plot(gcn_epoch, gcn_vals, label="GAT", color='g')
plt.title("Validation Accuracy vs Epochs on cora Dataset")
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.legend()
plt.grid(True)
plt.show()
if __name__ == '__main__':
main()