-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAssignmentFunctions.m
392 lines (315 loc) · 10.3 KB
/
AssignmentFunctions.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
%% 1. Importing Data
% House-Price in the USA at 1/1/2019 (pre-cleaned) - using 8 Regressors
% Evaluate this before running the 'OLS Regression Function'
[data,text]=xlsread('houseprice_data_2019.xlsx');
data1 = data(:, :);
names = text;
Y = data1(:, 1);
X = data1(:, 2:end);
[T,N] = size(X);
X = [ones(T,1) X];
K=size(X,2);
df = T-K;
%% 2. OLS Regression Function [Code also provided at end of this script]
BetaOLSFunction(X,Y)
%% 3. ARIMA Forecasting Model
%% 1. Import Data
[data,text] = xlsread('FREDQ_DATA.xlsx');
data1 = data(3:end,:);
names = text(1,2:end);
date = text(4:end,1);
% Data of Interest
endsample = find(contains(date,'01/09/2022'));
DATAFINAL = data1(1:endsample,:);
idx = [1 12];
DATASELECT = DATAFINAL(:,idx);
LABEL = names(idx);
time = 1959+(3/12):(3/12):2022+(09/12);
ylabs = ["Index" "Index"];
% Plot Raw Time Series
P1=figure(1);
for i=1:size(DATASELECT,2) % alternatively cols(DATASELECT)
subplot(size(DATASELECT,2),1,i)
plot(time,DATASELECT(:,i),'LineWidth',1.3,'Color','k')
axis tight
ylabel(ylabs(i)); xlabel("Years")
title(LABEL(i))
end
hold off
% Data Selection for Correlograms
GDP = DATASELECT(:,1);
GovExp = DATASELECT(:,2);
ts1 = [GDP,GovExp];
figure()
plot(time,ts1)
legend('GDP','GovExp')
hold off
% ACF & PACF
figure
subplot(2,1,1)
autocorr(GDP)
subplot(2,1,2)
parcorr(GDP)
% Augmented Dickey-Fuller Test
disp(' T-stat Pval (Lag = Auto (BIC), No Deterministic)')
[ts, pv] = augdfautolag(GDP,0,20,'BIC');
disp([ts,pv]);
disp(' T-stat Pval (Lag = Auto (BIC), Intercept)')
[ts, pv] = augdfautolag(GDP,1,20,'BIC');
disp([ts,pv]);
disp(' T-stat Pval (Lag = Auto (BIC), Intercept & Trend)')
[ts, pv] = augdfautolag(GDP,2,20,'BIC');
disp([ts,pv]);
%% 2. Data Selection + Transformation for ARIMA Forecasting
% Transformation for Stationarity [FRED-MD Suggested]
tcode = [5 5];
DATATRANSFORM=getdatatransform(DATASELECT,tcode);
plotx1(DATATRANSFORM,tcode,LABEL,time) % Trend Removed
hold off
GDP_R = DATATRANSFORM(:,1);
ts1 = [GDP_R];
figure()
plot(time,ts1)
legend('GDP')
hold off
Y = GDP_R(1:150,:);
T = 120;
%% 3. ACF & PACF
figure
subplot(2,1,1)
autocorr(Y)
subplot(2,1,2)
parcorr(Y)
%% 4. ARIMA Model Estimation - Different Lag Combinations
% Estimate 4 ARIMA Models with different lags combinations
LOGL = zeros(4,4); %Initialize
PQ = zeros(4,4);
for p = 1:4
for q = 1:4
mod = arima(p,0,q);
[fit,~,logL] = estimate(mod,Y);
LOGL(p,q) = logL;
PQ(p,q) = p+q;
end
end
% Calculate BIC - Information Criterion
LOGL = reshape(LOGL,16,1);
PQ = reshape(PQ,16,1);
[~,bic] = aicbic(LOGL,PQ+1,100);
reshape(bic,4,4)
% Choose ARMA(2,4)
%% 5. ARMA Residual Diagnostics
% ARMA(2,4) as indicated by BIC
%Remove NaN
Y_T = GDP_R(2:end,:);
[parameters, ll, errors] = armaxfilter(Y_T,0,2,4);
disp('Parameters')
disp(parameters)
% Standardized errors are simpler to use since they are scale free
stderrors = errors / std(errors);
% ACF & PACF Plots of Residuals
figure()
plot(stderrors)
sacf(stderrors,24)
spacf(stderrors,24)
hold off
% Autocorrelation at Lags 1 & 24
% Implement Ljung-Box Test
disp('Ljung-Box Test (Test stat, p-value)' )
[ts,pv]=ljungbox(stderrors,12);
disp([ts,pv])
% P-value is High [No Serial Correlation]
%% 6. Forecast pseudo out-of-sample with ARIMA Model
% According to BIC, we select an ARMA(2,4) Model
ToEstMdlm1 = arima('ARLags',2,'MALags',4);
[EstMdlm1, logL1] = estimate(ToEstMdlm1,Y(1:T));
h = 30; % Horizons
[YFm1,YMSEm1] = forecast(EstMdlm1,h,'Y0',Y(1:T));
% Forecast Error
EFm1 = Y(T+1:T+h)-YFm1;
% Root Mean Square Forecast Error (RMSE)
EF2m1=EFm1.^2;
RMSFEm1 = [sum(EF2m1)]/h;
figure
h1 = plot(Y,'Color',[.7,.7,.7]);
hold on
h2 = plot(121:121+h-1,YFm1,'b','LineWidth',2);
h3 = plot(121:121+h-1,YFm1 + 1.96*sqrt(YMSEm1),'r:',...
'LineWidth',2);
plot(121:121+h-1,YFm1 - 1.96*sqrt(YMSEm1),'r:','LineWidth',2);
legend([h1 h2 h3],'Observed','Forecast',...
'95% Confidence Interval','Location','NorthWest');
title(['30-Period Forecasts and Approximate 95% '...
'Confidence Intervals'])
hold off
%% 7. Choose ARMA(3,3) and use to forecast GDP
ToEstMdlm2 = arima('ARLags',3,'MALags',3);
EstMdlm2 = estimate(ToEstMdlm2,Y(1:T));
h = 30; %%%horizons
[YFm2,YMSEm2] = forecast(EstMdlm2,h,'Y0',Y(1:T));
%%%% Forecast error
EFm2 = Y(T+1:T+h)-YFm2;
%%%% Root Mean Square Forecast Error (RMSE)
EF2m2=EFm2.^2;
RMSFEm2 = [sum(EF2m2)]/h;
figure
h1 = plot(Y,'Color',[.7,.7,.7]);
hold on
h2 = plot(121:121+h-1,YFm2,'b','LineWidth',2);
h3 = plot(121:121+h-1,YFm2 + 1.96*sqrt(YMSEm2),'r:',...
'LineWidth',2);
plot(121:121+h-1,YFm2 - 1.96*sqrt(YMSEm2),'r:','LineWidth',2);
legend([h1 h2 h3],'Observed','Forecast',...
'95% Confidence Interval','Location','NorthWest');
title(['30-Period Forecasts and Approximate 95% '...
'Confidence Intervals'])
hold off
%% 8. Compare ARIMA Models
RMSE = [RMSFEm1, RMSFEm2]
% If we compare RMSFEm1 (0.3353) and RMSFEm2 (0.3282) we select ARMA(3,3)
%% 9. Statistically Different
% We can use the Diebold-Mariano test to check if the two forecasts are
% statistically different or not
% Under H0: EFm1 = EFm2 (where EFm1 and EFm2 are the Mean Square Forecast
% Error for ARMA(2,4) and ARMA(3,3)
[DMstat, pvalue] = dmtest1(EFm1, EFm2, h)
% according to the pvalue, we fail to reject H0 hence (even if RMSFE is
% lower for ARMA(2,4) than for ARMA(3,3)) both models have the same
% forecasting performance. We don't have a superior model in prediction
% terms.
%% 10. Forecast Out-of-Sample [Random Walk]
ToEstMdlm3 = arima('ARLags',1,'D',1,'MALags',1);
EstMdlm3 = estimate(ToEstMdlm3,GDP);
h = 30; % Horizons
[YFm3,YMSEm3] = forecast(EstMdlm3,h,'Y0',(GDP));
YFm3(2)
figure
h1 = plot(GDP,'Color',[.7,.7,.7]);
hold on
h2 = plot(256:256+h-1,YFm3,'b','LineWidth',2);
h3 = plot(256:256+h-1,YFm3 + 1.96*sqrt(YMSEm3),'r:',...
'LineWidth',2);
plot(256:256+h-1,YFm3 - 1.96*sqrt(YMSEm3),'r:','LineWidth',2);
legend([h1 h2 h3],'Observed','Forecast',...
'95% Confidence Interval','Location','NorthWest');
title(['30-Period Forecasts and Approximate 95% '...
'Confidence Intervals'])
hold off
%% Assignment OLS Script [Code used in Function with explanations]
%% 1. OLS Estimation [Part 1 (a)]
% The model can be written as follows
% Y = X * beta + EPSILON
% (T*1) T*(N+1) (N+1)*1 (T*1)
Beta_hat = (X'*X)\X'*Y
% Estimated 'Y'
Yhat = X*Beta_hat;
% Residuals
residuals = Y - Yhat;
% Variance & Standard Error of Residuals
sigma_r = (residuals.'*residuals)/(T-K); % Residual Variance Estimator
r_stderr = sqrt(diag(sigma_r)); % Residual Variance Std. Error
% Variance & Standard Error of OLS Estimators
varbeta = sigma_r.*inv(X'*X); % Var/Covar Matrix
stderr_beta = sqrt(diag(varbeta)); % Standard Errors
%% 2. Confidence Intervals [Part 1(b)]
alpha = 0.05 % Level of Significance
t_critical = tinv(1-alpha/2,T-K-1); % Critical 't' = 1.96
CI = [Beta_hat - stderr_beta.*1.96, Beta_hat + stderr_beta.*1.96]
%% 3. Statistical Significance of Beta Coefficients [Part 1 (c)]
% H0 (null hypothesis): beta_i = 0 (for i=0,...,8)
% H1 (alternative hypothesis): beta_i ~= 0 (for i=0,...,8)
t_stat = abs(Beta_hat./stderr_beta) % empirical t-statistics
t_critical = tinv(1-alpha/2,T-N)
p_value_t = tcdf(t_stat, T-N,"upper")*2
%% 4. Goodness of Fit [Part 1 (d)]
% R-squared
Ybar = mean(Y);
R2 = sum((Yhat-Ybar).^2)/sum((Y-Ybar).^2)
% Adjusted R-squared
AdjR2 = 1-((T-1)/(T-K)*(1-R2))
%% 5. F-statistic
% H0; Beta_2 = Beta_3 = Beta_4 = Beta_5 ... Beta_8 = 0]
% H1; Beta_i ~= 0 (for i=2,...,8]
% Restricted Regression
regressors_remained = 1;
m = K-regressors_remained; % the number of restrictions
% Empirical 'F-Statistic'
F_statistic = (R2/(m))/((1-R2)/(T-K))
% P-Value
Fp_value = 1 - fcdf(F_statistic,m,T-K)
%% 6. Plot of the Fitted Model [Part 1 (f)]
figure(1)
coefficients = polyfit(Yhat,Y,1);
xFit = linspace(min(Yhat),max(Yhat),2000);
yFit = polyval(coefficients,xFit);
subplot(1,2,1)
plot(Yhat,Y,'b*')
hold on;
plot(xFit,yFit,'r-','LineWidth',2);
grid on;
xlabel("Estimated House Prices (giving Line of Best Fit)")
ylabel("Observed House Prices")
title("Plot of the Fitted Model")
hold off
subplot(1,2,2)
scatter(Yhat,residuals)
xlabel("Estimated House Prices")
ylabel("Residuals")
title("Residuals Scatter Plot")
hold off
%% 7. Diagnostic Test for Normality [Part 1 (g)]
% Plotting Residuals - visual check of normality assumption
figure(2)
subplot(1,2,1)
qqplot(residuals)
title('Normal Q-Q');
ylabel('Residuals');
subplot(1,2,2)
histogram(residuals);
title('Histogram of Residuals');
xlabel('Residuals'); ylabel('Frequency');
hold off
% Jarque-Bera Test
% H0; We assume that residuals are Normally Distributed
% H1; We assume that residuals are not Normally Distributed
Skewness = skewness(residuals)
Kurtosis = kurtosis(residuals)
JB = T*((skewness(residuals)^2)/6 + ((kurtosis(residuals)-3)^2)/24)
JBcrit=chi2inv(0.95,2)
if JB > JBcrit % H = 1; reject H0
H = 1
elseif JB < JBcrit % H = 0 means Normal Distribution present
H = 0
end
%% 8. Residuals Diagnostic Test for Heteroskedasticity [Part 1 (g)]
% Breusch-Pagan Test
% H0; Delta2 = Delta3 ... Delta 9 = 0
% H1; there is heteroskedasticity present
RSS = (residuals.'*residuals);
sigmaeps = (1./T).*RSS;
epsnew = (residuals.^2)./sigmaeps - 1;
Beta_BP = inv(X.'*X)*X.'*epsnew;
epsfitted = X*Beta_BP;
BP_stat = sum(epsfitted.^2)./2
bpcrit = chi2inv(0.95,m)
pvalue_BP = 1-chis_prb(BP_stat,m)
% There are no square terms or cross-terms in regression
% Breusch-Pagan is satisfactory to show Heteroskedasticity
% Heteroskedasticity present
%% 9. Residuals Diagnostic Test for Serial Correlation [Part 1 (g)]
% Durbin-Watson test
% H0: rho = 0
% H1: eps_{t} = rho*eps_{t-1} + u_{t}, with rho different from 0.
DW=sum(diff(residuals,1).^2)./sum(residuals.^2)
% DW is approximately equal to 2. Implies NO SERIAL CORRELATION
% Checking with Critical Values for Alpha = 0.05 & k=9 [inc. intercept]
dL = 1.917
dU = 1.936
Four_dU = 4 - dU
Four_dL = 4 - dL
% dU < DW < 2
% There is NO Serial Correlation0
%% 10. Testing for Multicollinearity [Part 1 (h)]
R0 = corrcoef(X(:,2:end));
VIF = diag(inv(R0))';
VIF = array2table(VIF)