forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_operators.py
501 lines (433 loc) · 18.9 KB
/
batch_operators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import random
import numpy as np
from ppcls.utils import logger
from ppcls.data.preprocess.ops.fmix import sample_mask
import paddle
import paddle.nn.functional as F
class BatchOperator(object):
""" BatchOperator """
def __init__(self, *args, **kwargs):
pass
def _unpack(self, batch):
""" _unpack """
assert isinstance(batch, list), \
'batch should be a list filled with tuples (img, label)'
bs = len(batch)
assert bs > 0, 'size of the batch data should > 0'
#imgs, labels = list(zip(*batch))
imgs = []
labels = []
for item in batch:
imgs.append(item[0])
labels.append(item[1])
return np.array(imgs), np.array(labels), bs
def _one_hot(self, targets):
return np.eye(self.class_num, dtype="float32")[targets]
def _mix_target(self, targets0, targets1, lam):
one_hots0 = self._one_hot(targets0)
one_hots1 = self._one_hot(targets1)
return one_hots0 * lam + one_hots1 * (1 - lam)
def __call__(self, batch):
return batch
class MixupOperator(BatchOperator):
""" Mixup operator
reference: https://arxiv.org/abs/1710.09412
"""
def __init__(self, class_num, alpha: float=1.):
"""Build Mixup operator
Args:
alpha (float, optional): The parameter alpha of mixup. Defaults to 1..
Raises:
Exception: The value of parameter is illegal.
"""
if alpha <= 0:
raise Exception(
f"Parameter \"alpha\" of Mixup should be greater than 0. \"alpha\": {alpha}."
)
if not class_num:
msg = "Please set \"Arch.class_num\" in config if use \"MixupOperator\"."
logger.error(Exception(msg))
raise Exception(msg)
self._alpha = alpha
self.class_num = class_num
def __call__(self, batch):
imgs, labels, bs = self._unpack(batch)
idx = np.random.permutation(bs)
lam = np.random.beta(self._alpha, self._alpha)
imgs = lam * imgs + (1 - lam) * imgs[idx]
targets = self._mix_target(labels, labels[idx], lam)
return list(zip(imgs, targets))
class CutmixOperator(BatchOperator):
""" Cutmix operator
reference: https://arxiv.org/abs/1905.04899
"""
def __init__(self, class_num, alpha=0.2):
"""Build Cutmix operator
Args:
alpha (float, optional): The parameter alpha of cutmix. Defaults to 0.2.
Raises:
Exception: The value of parameter is illegal.
"""
if alpha <= 0:
raise Exception(
f"Parameter \"alpha\" of Cutmix should be greater than 0. \"alpha\": {alpha}."
)
if not class_num:
msg = "Please set \"Arch.class_num\" in config if use \"CutmixOperator\"."
logger.error(Exception(msg))
raise Exception(msg)
self._alpha = alpha
self.class_num = class_num
def _rand_bbox(self, size, lam):
""" _rand_bbox """
w = size[2]
h = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = int(w * cut_rat)
cut_h = int(h * cut_rat)
# uniform
cx = np.random.randint(w)
cy = np.random.randint(h)
bbx1 = np.clip(cx - cut_w // 2, 0, w)
bby1 = np.clip(cy - cut_h // 2, 0, h)
bbx2 = np.clip(cx + cut_w // 2, 0, w)
bby2 = np.clip(cy + cut_h // 2, 0, h)
return bbx1, bby1, bbx2, bby2
def __call__(self, batch):
imgs, labels, bs = self._unpack(batch)
idx = np.random.permutation(bs)
lam = np.random.beta(self._alpha, self._alpha)
bbx1, bby1, bbx2, bby2 = self._rand_bbox(imgs.shape, lam)
imgs[:, :, bbx1:bbx2, bby1:bby2] = imgs[idx, :, bbx1:bbx2, bby1:bby2]
lam = 1 - (float(bbx2 - bbx1) * (bby2 - bby1) /
(imgs.shape[-2] * imgs.shape[-1]))
targets = self._mix_target(labels, labels[idx], lam)
return list(zip(imgs, targets))
class FmixOperator(BatchOperator):
""" Fmix operator
reference: https://arxiv.org/abs/2002.12047
"""
def __init__(self,
class_num,
alpha=1,
decay_power=3,
max_soft=0.,
reformulate=False):
if not class_num:
msg = "Please set \"Arch.class_num\" in config if use \"FmixOperator\"."
logger.error(Exception(msg))
raise Exception(msg)
self._alpha = alpha
self._decay_power = decay_power
self._max_soft = max_soft
self._reformulate = reformulate
self.class_num = class_num
def __call__(self, batch):
imgs, labels, bs = self._unpack(batch)
idx = np.random.permutation(bs)
size = (imgs.shape[2], imgs.shape[3])
lam, mask = sample_mask(self._alpha, self._decay_power, \
size, self._max_soft, self._reformulate)
imgs = mask * imgs + (1 - mask) * imgs[idx]
targets = self._mix_target(labels, labels[idx], lam)
return list(zip(imgs, targets))
class OpSampler(object):
""" Sample a operator from """
def __init__(self, class_num, **op_dict):
"""Build OpSampler
Raises:
Exception: The parameter \"prob\" of operator(s) are be set error.
"""
if not class_num:
msg = "Please set \"Arch.class_num\" in config if use \"OpSampler\"."
logger.error(Exception(msg))
raise Exception(msg)
if len(op_dict) < 1:
msg = f"ConfigWarning: No operator in \"OpSampler\". \"OpSampler\" has been skipped."
logger.warning(msg)
self.ops = {}
total_prob = 0
for op_name in op_dict:
param = op_dict[op_name]
if "prob" not in param:
msg = f"ConfigWarning: Parameter \"prob\" should be set when use operator in \"OpSampler\". The operator \"{op_name}\"'s prob has been set \"0\"."
logger.warning(msg)
prob = param.pop("prob", 0)
total_prob += prob
param.update({"class_num": class_num})
op = eval(op_name)(**param)
self.ops.update({op: prob})
if total_prob > 1:
msg = f"ConfigError: The total prob of operators in \"OpSampler\" should be less 1."
logger.error(Exception(msg))
raise Exception(msg)
# add "None Op" when total_prob < 1, "None Op" do nothing
self.ops[None] = 1 - total_prob
def __call__(self, batch):
op = random.choices(
list(self.ops.keys()), weights=list(self.ops.values()), k=1)[0]
# return batch directly when None Op
return op(batch) if op else batch
class MixupCutmixHybrid(object):
""" Mixup/Cutmix that applies different params to each element or whole batch
Args:
mixup_alpha (float): mixup alpha value, mixup is active if > 0.
cutmix_alpha (float): cutmix alpha value, cutmix is active if > 0.
cutmix_minmax (List[float]): cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None.
prob (float): probability of applying mixup or cutmix per batch or element
switch_prob (float): probability of switching to cutmix instead of mixup when both are active
mode (str): how to apply mixup/cutmix params (per 'batch', 'pair' (pair of elements), 'elem' (element)
correct_lam (bool): apply lambda correction when cutmix bbox clipped by image borders
label_smoothing (float): apply label smoothing to the mixed target tensor
num_classes (int): number of classes for target
"""
def __init__(self,
mixup_alpha=1.,
cutmix_alpha=0.,
cutmix_minmax=None,
prob=1.0,
switch_prob=0.5,
mode='batch',
correct_lam=True,
label_smoothing=0.1,
num_classes=4):
self.mixup_alpha = mixup_alpha
self.cutmix_alpha = cutmix_alpha
self.cutmix_minmax = cutmix_minmax
if self.cutmix_minmax is not None:
assert len(self.cutmix_minmax) == 2
# force cutmix alpha == 1.0 when minmax active to keep logic simple & safe
self.cutmix_alpha = 1.0
self.mix_prob = prob
self.switch_prob = switch_prob
self.label_smoothing = label_smoothing
self.num_classes = num_classes
self.mode = mode
self.correct_lam = correct_lam # correct lambda based on clipped area for cutmix
self.mixup_enabled = True # set to false to disable mixing (intended tp be set by train loop)
def _one_hot(self, x, num_classes, on_value=1., off_value=0.):
x = paddle.cast(x, dtype='int64')
on_value = paddle.full([x.shape[0], num_classes], on_value)
off_value = paddle.full([x.shape[0], num_classes], off_value)
return paddle.where(
F.one_hot(x, num_classes) == 1, on_value, off_value)
def _mixup_target(self, target, num_classes, lam=1., smoothing=0.0):
off_value = smoothing / num_classes
on_value = 1. - smoothing + off_value
y1 = self._one_hot(
target,
num_classes,
on_value=on_value,
off_value=off_value, )
y2 = self._one_hot(
target.flip(0),
num_classes,
on_value=on_value,
off_value=off_value)
return y1 * lam + y2 * (1. - lam)
def _rand_bbox(self, img_shape, lam, margin=0., count=None):
""" Standard CutMix bounding-box
Generates a random square bbox based on lambda value. This impl includes
support for enforcing a border margin as percent of bbox dimensions.
Args:
img_shape (tuple): Image shape as tuple
lam (float): Cutmix lambda value
margin (float): Percentage of bbox dimension to enforce as margin (reduce amount of box outside image)
count (int): Number of bbox to generate
"""
ratio = np.sqrt(1 - lam)
img_h, img_w = img_shape[-2:]
cut_h, cut_w = int(img_h * ratio), int(img_w * ratio)
margin_y, margin_x = int(margin * cut_h), int(margin * cut_w)
cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count)
cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count)
yl = np.clip(cy - cut_h // 2, 0, img_h)
yh = np.clip(cy + cut_h // 2, 0, img_h)
xl = np.clip(cx - cut_w // 2, 0, img_w)
xh = np.clip(cx + cut_w // 2, 0, img_w)
return yl, yh, xl, xh
def _rand_bbox_minmax(self, img_shape, minmax, count=None):
""" Min-Max CutMix bounding-box
Inspired by Darknet cutmix impl, generates a random rectangular bbox
based on min/max percent values applied to each dimension of the input image.
Typical defaults for minmax are usually in the .2-.3 for min and .8-.9 range for max.
Args:
img_shape (tuple): Image shape as tuple
minmax (tuple or list): Min and max bbox ratios (as percent of image size)
count (int): Number of bbox to generate
"""
assert len(minmax) == 2
img_h, img_w = img_shape[-2:]
cut_h = np.random.randint(
int(img_h * minmax[0]), int(img_h * minmax[1]), size=count)
cut_w = np.random.randint(
int(img_w * minmax[0]), int(img_w * minmax[1]), size=count)
yl = np.random.randint(0, img_h - cut_h, size=count)
xl = np.random.randint(0, img_w - cut_w, size=count)
yu = yl + cut_h
xu = xl + cut_w
return yl, yu, xl, xu
def _cutmix_bbox_and_lam(self,
img_shape,
lam,
ratio_minmax=None,
correct_lam=True,
count=None):
""" Generate bbox and apply lambda correction.
"""
if ratio_minmax is not None:
yl, yu, xl, xu = self._rand_bbox_minmax(
img_shape, ratio_minmax, count=count)
else:
yl, yu, xl, xu = self._rand_bbox(img_shape, lam, count=count)
if correct_lam or ratio_minmax is not None:
bbox_area = (yu - yl) * (xu - xl)
lam = 1. - bbox_area / float(img_shape[-2] * img_shape[-1])
return (yl, yu, xl, xu), lam
def _params_per_elem(self, batch_size):
lam = np.ones(batch_size, dtype=np.float32)
use_cutmix = np.zeros(batch_size, dtype=np.bool)
if self.mixup_enabled:
if self.mixup_alpha > 0. and self.cutmix_alpha > 0.:
use_cutmix = np.random.rand(batch_size) < self.switch_prob
lam_mix = np.where(
use_cutmix,
np.random.beta(
self.cutmix_alpha, self.cutmix_alpha, size=batch_size),
np.random.beta(
self.mixup_alpha, self.mixup_alpha, size=batch_size))
elif self.mixup_alpha > 0.:
lam_mix = np.random.beta(
self.mixup_alpha, self.mixup_alpha, size=batch_size)
elif self.cutmix_alpha > 0.:
use_cutmix = np.ones(batch_size, dtype=np.bool)
lam_mix = np.random.beta(
self.cutmix_alpha, self.cutmix_alpha, size=batch_size)
else:
assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true."
lam = np.where(
np.random.rand(batch_size) < self.mix_prob,
lam_mix.astype(np.float32), lam)
return lam, use_cutmix
def _params_per_batch(self):
lam = 1.
use_cutmix = False
if self.mixup_enabled and np.random.rand() < self.mix_prob:
if self.mixup_alpha > 0. and self.cutmix_alpha > 0.:
use_cutmix = np.random.rand() < self.switch_prob
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) if use_cutmix else \
np.random.beta(self.mixup_alpha, self.mixup_alpha)
elif self.mixup_alpha > 0.:
lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha)
elif self.cutmix_alpha > 0.:
use_cutmix = True
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha)
else:
assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true."
lam = float(lam_mix)
return lam, use_cutmix
def _mix_elem(self, x):
batch_size = len(x)
lam_batch, use_cutmix = self._params_per_elem(batch_size)
x_orig = x.clone(
) # need to keep an unmodified original for mixing source
for i in range(batch_size):
j = batch_size - i - 1
lam = lam_batch[i]
if lam != 1.:
if use_cutmix[i]:
(yl, yh, xl, xh), lam = self._cutmix_bbox_and_lam(
x[i].shape,
lam,
ratio_minmax=self.cutmix_minmax,
correct_lam=self.correct_lam)
if yl < yh and xl < xh:
x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh]
lam_batch[i] = lam
else:
x[i] = x[i] * lam + x_orig[j] * (1 - lam)
return paddle.to_tensor(lam_batch, dtype=x.dtype).unsqueeze(1)
def _mix_pair(self, x):
batch_size = len(x)
lam_batch, use_cutmix = self._params_per_elem(batch_size // 2)
x_orig = x.clone(
) # need to keep an unmodified original for mixing source
for i in range(batch_size // 2):
j = batch_size - i - 1
lam = lam_batch[i]
if lam != 1.:
if use_cutmix[i]:
(yl, yh, xl, xh), lam = self._cutmix_bbox_and_lam(
x[i].shape,
lam,
ratio_minmax=self.cutmix_minmax,
correct_lam=self.correct_lam)
if yl < yh and xl < xh:
x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh]
x[j][:, yl:yh, xl:xh] = x_orig[i][:, yl:yh, xl:xh]
lam_batch[i] = lam
else:
x[i] = x[i] * lam + x_orig[j] * (1 - lam)
x[j] = x[j] * lam + x_orig[i] * (1 - lam)
lam_batch = np.concatenate((lam_batch, lam_batch[::-1]))
return paddle.to_tensor(lam_batch, dtype=x.dtype).unsqueeze(1)
def _mix_batch(self, x):
lam, use_cutmix = self._params_per_batch()
if lam == 1.:
return 1.
if use_cutmix:
(yl, yh, xl, xh), lam = self._cutmix_bbox_and_lam(
x.shape,
lam,
ratio_minmax=self.cutmix_minmax,
correct_lam=self.correct_lam)
if yl < yh and xl < xh:
x[:, :, yl:yh, xl:xh] = x.flip(0)[:, :, yl:yh, xl:xh]
else:
x_flipped = x.flip(0) * (1. - lam)
x[:] = x * lam + x_flipped
return lam
def _unpack(self, batch):
""" _unpack """
assert isinstance(batch, list), \
'batch should be a list filled with tuples (img, label)'
bs = len(batch)
assert bs > 0, 'size of the batch data should > 0'
#imgs, labels = list(zip(*batch))
imgs = []
labels = []
for item in batch:
imgs.append(item[0])
labels.append(item[1])
return np.array(imgs), np.array(labels), bs
def __call__(self, batch):
x, target, bs = self._unpack(batch)
x = paddle.to_tensor(x)
target = paddle.to_tensor(target)
assert len(x) % 2 == 0, 'Batch size should be even when using this'
if self.mode == 'elem':
lam = self._mix_elem(x)
elif self.mode == 'pair':
lam = self._mix_pair(x)
else:
lam = self._mix_batch(x)
target = self._mixup_target(target, self.num_classes, lam,
self.label_smoothing)
return list(zip(x.numpy(), target.numpy()))