-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathwaffle_tools.py
871 lines (748 loc) · 56.7 KB
/
waffle_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
from collections import OrderedDict
import os
import pathlib
import random
from typing import Tuple, List, Union, Any
import argparse
import clip
from imagenetv2_pytorch import ImageNetV2Dataset as ImageNetV2
import json
import numpy as np
import torch
from torch.nn import functional as F
from torchvision.datasets import ImageNet, EuroSAT, Food101, Flowers102, Places365, OxfordIIITPet, DTD, FGVCAircraft, StanfordCars
import tqdm
from datasets import _transform, CUBDataset
# List of methods available to use.
METHODS = [
'clip',
'gpt_descriptions',
'random_descriptions',
'swapped_descriptions',
'scrambled_descriptions',
'random_description_words',
'adaptive_random_characters',
'adaptive_randomness',
'shared_random_descriptions',
'shared_random_description_words',
'shared_random_characters',
'adaptive_randomness_and_gpt_descriptions',
'gpt_descriptions_and_prompt_ensemble',
'prompt_ensemble',
'waffle_characters',
'waffle',
'waffle_and_gpt',
'waffle_and_prompt_ensemble',
'context_prompt_ensemble',
]
# List of compatible datasets.
DATASETS = [
'imagenet',
'imagenetv2',
'cub',
'places365',
'dtd',
'food101',
'eurosat',
'pets',
'flowers102',
'fgvcaircraft',
'cars'
]
# List of compatible backbones.
BACKBONES = [
'RN50',
'ViT-B/32',
'ViT-L/14',
]
# Default CLIP normalization stats
CLIP_STATS = (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)
def seed_everything(seed: int):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def setup(opt: argparse.Namespace):
opt.image_size = 224
if opt.model_size == 'ViT-L/14@336px' and opt.image_size != 336:
print(f'Model size is {opt.model_size} but image size is {opt.image_size}. Setting image size to 336.')
opt.image_size = 336
elif opt.model_size == 'RN50x4' and opt.image_size != 288:
print(f'Model size is {opt.model_size} but image size is {opt.image_size}. Setting image size to 288.')
opt.image_size = 288
elif opt.model_size == 'RN50x16' and opt.image_size != 384:
print(f'Model size is {opt.model_size} but image size is {opt.image_size}. Setting image size to 384.')
opt.image_size = 384
elif opt.model_size == 'RN50x64' and opt.image_size != 448:
print(f'Model size is {opt.model_size} but image size is {opt.image_size}. Setting image size to 448.')
opt.image_size = 448
opt.descriptor_fname = None
IMAGENET_DIR = '/home/karsten_dl/Dropbox/Projects/Datasets/ImageNet2012' # REPLACE THIS WITH YOUR OWN PATH
IMAGENETV2_DIR = '/home/karsten_dl/Dropbox/Projects/Datasets/ImageNetV2' # REPLACE THIS WITH YOUR OWN PATH
CUB_DIR = '/home/karsten_dl/Dropbox/Projects/Datasets/cub200' # REPLACE THIS WITH YOUR OWN PATH
EUROSAT_DIR = '/home/karsten_dl/Dropbox/Projects/Datasets/eurosat' # REPLACE THIS WITH YOUR OWN PATH
PLACES365_DIR = '/home/karsten_dl/Dropbox/Projects/Datasets/places365' # REPLACE THIS WITH YOUR OWN PATH
PETS_DIR = '/home/karsten_dl/Dropbox/Projects/Datasets/pets' # REPLACE THIS WITH YOUR OWN PATH
FOOD101_DIR = '/home/karsten_dl/Dropbox/Projects/Datasets/food101' # REPLACE THIS WITH YOUR OWN PATH
DTD_DIR = '/home/karsten_dl/Dropbox/Projects/Datasets/dtd' # REPLACE THIS WITH YOUR OWN PATH
FLOWERS102_DIR = '/home/karsten_dl/Dropbox/Projects/Datasets/flowers102' # REPLACE THIS WITH YOUR OWN PATH
FGVCAIRCRAFT_DIR = '/home/karsten_dl/Dropbox/Projects/Datasets/fgvcaircraft' # REPLACE THIS WITH YOUR OWN PATH
CARS_DIR = '/home/karsten_dl/Dropbox/Projects/Datasets/cars' # REPLACE THIS WITH YOUR OWN PATH
# PyTorch datasets
opt.tfms = _transform(opt.image_size)
if opt.dataset == 'imagenet':
dsclass = ImageNet
opt.data_dir = pathlib.Path(IMAGENET_DIR)
dataset = dsclass(opt.data_dir, split='val', transform=opt.tfms)
opt.classes_to_load = None
opt.descriptor_fname = 'descriptors_imagenet'
elif opt.dataset == 'imagenetv2':
opt.data_dir = pathlib.Path(IMAGENETV2_DIR)
dataset = ImageNetV2(location=opt.data_dir, transform=opt.tfms)
opt.classes_to_load = openai_imagenet_classes
opt.descriptor_fname = 'descriptors_imagenet'
dataset.classes = opt.classes_to_load
elif opt.dataset == 'cub':
# load CUB dataset
opt.data_dir = pathlib.Path(CUB_DIR)
dataset = CUBDataset(opt.data_dir, train=False, transform=opt.tfms)
opt.classes_to_load = None #dataset.classes
opt.descriptor_fname = 'descriptors_cub'
elif opt.dataset == 'eurosat':
dsclass = EuroSAT
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
opt.data_dir = pathlib.Path(EUROSAT_DIR)
dataset = dsclass(opt.data_dir, transform=opt.tfms, download=True)
opt.classes_to_load = None
opt.descriptor_fname = 'descriptors_eurosat'
elif opt.dataset == 'places365':
dsclass = Places365
opt.data_dir = pathlib.Path(PLACES365_DIR)
download = True
if os.path.exists(os.path.join(opt.data_dir, 'val_256')):
download = False
dataset = dsclass(opt.data_dir, split='val', small=True, transform=opt.tfms, download=download)
opt.classes_to_load = None
opt.descriptor_fname = 'descriptors_places365'
elif opt.dataset == 'food101':
dsclass = Food101
opt.data_dir = pathlib.Path(FOOD101_DIR)
dataset = dsclass(opt.data_dir, split='test', transform=opt.tfms, download=True)
opt.classes_to_load = None
opt.descriptor_fname = 'descriptors_food101'
elif opt.dataset == 'pets':
dsclass = OxfordIIITPet
opt.data_dir = pathlib.Path(PETS_DIR)
dataset = dsclass(opt.data_dir, split='test', transform=opt.tfms, download=True)
opt.classes_to_load = None
opt.descriptor_fname = 'descriptors_pets'
elif opt.dataset == 'dtd':
dsclass = DTD
opt.data_dir = pathlib.Path(DTD_DIR)
dataset = dsclass(opt.data_dir, split='test', transform=opt.tfms, download=True)
opt.classes_to_load = None
opt.descriptor_fname = 'descriptors_dtd'
elif opt.dataset == 'flowers102':
dsclass = Flowers102
opt.data_dir = pathlib.Path(FLOWERS102_DIR)
dataset = dsclass(opt.data_dir, split='test', transform=opt.tfms, download=True)
opt.classes_to_load = None
opt.descriptor_fname = 'descriptors_flowers102'
elif opt.dataset == 'fgvcaircraft':
dsclass = FGVCAircraft
opt.data_dir = pathlib.Path(FGVCAIRCRAFT_DIR)
dataset = dsclass(opt.data_dir, split='test', annotation_level='family', transform=opt.tfms, download=True)
opt.classes_to_load = None
opt.descriptor_fname = 'descriptors_fgvcaircraft'
elif opt.dataset == 'cars':
dsclass = StanfordCars
opt.data_dir = pathlib.Path(CARS_DIR)
dataset = dsclass(opt.data_dir, split='test', transform=opt.tfms, download=True)
opt.classes_to_load = None
opt.descriptor_fname = 'descriptors_cars'
if opt.descriptor_fname is not None:
opt.descriptor_fname = './descriptors/' + opt.descriptor_fname
return opt, dataset
def denormalize(
images: torch.Tensor,
means: Union[Tuple[float],List[float]]=(0.485, 0.456, 0.406),
stds: Union[Tuple[float],List[float]]=(0.229, 0.224, 0.225)
):
means = torch.tensor(means).reshape(1, 3, 1, 1)
stds = torch.tensor(stds).reshape(1, 3, 1, 1)
return images * stds + means
def load_json(filename: str):
if not filename.endswith('.json'):
filename += '.json'
with open(filename, 'r') as fp:
return json.load(fp)
def wordify(string: str):
word = string.replace('_', ' ')
return word
def make_descriptor_sentence(descriptor: str):
if descriptor.startswith('a') or descriptor.startswith('an'):
return f"which is {descriptor}"
elif descriptor.startswith('has') or descriptor.startswith('often') or descriptor.startswith('typically') or descriptor.startswith('may') or descriptor.startswith('can'):
return f"which {descriptor}"
elif descriptor.startswith('used'):
return f"which is {descriptor}"
else:
return f"which has {descriptor}"
def modify_descriptor(descriptor: str, apply_changes: bool):
if apply_changes:
return make_descriptor_sentence(descriptor)
return descriptor
def load_gpt_descriptions(opt: argparse.Namespace, classes_to_load: List=None, mode: str='clip'):
### Prepare extracted descriptions.
gpt_descriptions = load_json(opt.descriptor_fname)
# Replace empty descriptor lists if necessary.
gpt_descriptions = {key: item if len(item) else [''] for key, item in gpt_descriptions.items()}
### (Lazy - uses gpt descriptions) Use the default CLIP setup.
if not 'label_to_classname' in vars(opt):
opt.label_to_classname = list(gpt_descriptions.keys())
opt.n_classes = len(opt.label_to_classname)
### (Lazy - uses gpt descriptions) Use the default CLIP setup.
if mode == 'clip':
gpt_descriptions = {l: opt.label_before_text + wordify(l) + opt.label_after_text for l in opt.label_to_classname}
# Get complete list of available descriptions.
descr_list = [list(values) for values in gpt_descriptions.values()]
descr_list = np.array([x for y in descr_list for x in y])
# List of available classes.
key_list = list(gpt_descriptions.keys())
### Descriptor Makers.
structured_descriptor_builder = lambda item, cls: f"{opt.pre_descriptor_text}{opt.label_before_text}{wordify(cls)}{opt.descriptor_separator}{modify_descriptor(item, opt.apply_descriptor_modification)}{opt.label_after_text}"
# generic_descriptor_builder = lambda item, cls: f"{opt.pre_descriptor_text}{opt.label_before_text}{wordify(cls)}{opt.descriptor_separator}{item}{opt.label_after_text}"
### Use description-based CLIP (DCLIP).
if mode == 'gpt_descriptions':
gpt_descriptions = {key: [structured_descriptor_builder(item, key) for item in class_descr_list] for key, class_descr_list in gpt_descriptions.items()}
### Use DCLIP with randomly assigned descriptions (every class gets its own random subset).
if mode == 'random_descriptions':
# Average number of descriptions per class.
num_descr_per_class = int(np.ceil(len(descr_list)/len(gpt_descriptions)))
# Number of randomly assigned descriptions per class.
num_rand_descr_per_class = num_descr_per_class * opt.randomization_budget
# Fill description dictionary.
gpt_descriptions = {
key: list(np.random.choice(descr_list, np.min([len(descr_list), num_rand_descr_per_class]), replace=False)) for key in gpt_descriptions.keys()}
gpt_descriptions = {key: [structured_descriptor_builder(item, key) for item in class_descr_list] for key, class_descr_list in gpt_descriptions.items()}
### Use DCLIP where every class uses the same set of random descriptions.
if mode == 'shared_random_descriptions':
# Average number of descriptions per class.
num_descr_per_class = int(np.ceil(len(descr_list)/len(gpt_descriptions)))
num_samples = int(num_descr_per_class * opt.randomization_budget)
replace = False if num_samples <= len(descr_list) else True
list_shared_descr = np.random.choice(descr_list, num_samples, replace=replace)
gpt_descriptions = {key: list_shared_descr for key in gpt_descriptions.keys()}
gpt_descriptions = {key: [structured_descriptor_builder(item, key) for item in class_descr_list] for key, class_descr_list in gpt_descriptions.items()}
### Use DCLIP with randomly swapped descriptions lists.
if mode == 'swapped_descriptions':
import copy
base_descriptions = copy.deepcopy(gpt_descriptions)
idcs = np.arange(len(key_list))
np.random.shuffle(idcs)
for i, key in enumerate(key_list):
gpt_descriptions[key] = [structured_descriptor_builder(item, key) for item in base_descriptions[key_list[idcs[i]]]]
### Use DCLIP with scrambled descriptions.
if mode == 'scrambled_descriptions':
import copy
base_descriptions = copy.deepcopy(gpt_descriptions)
idcs = np.arange(len(key_list))
np.random.shuffle(idcs)
for i, key in enumerate(key_list):
class_word_list = [x.split(' ') for x in base_descriptions[key]]
class_word_list = [x.replace('.', '') for y in class_word_list for x in y]
new_descr = []
for descr in base_descriptions[key]:
new_descr.append(' '.join(np.random.choice(class_word_list, len(descr.split(' ')), replace=True)))
gpt_descriptions[key] = [structured_descriptor_builder(item, key) for item in new_descr]
### Use DCLIP with randomly assigned words from all available descriptions (every class gets its own random subset).
if mode == 'random_description_words':
# Average number of descriptions per class.
num_descr_per_class = int(np.ceil(len(descr_list)/len(gpt_descriptions)))
# Number of randomly assigned descriptions per class.
num_rand_descr_per_class = num_descr_per_class * opt.randomization_budget
# Average word length.
mean_len = int(np.ceil(np.mean([len(x.split(' ')) for x in descr_list])))
# Get cleaned list of available words.
word_list = [x.split(' ') for x in descr_list]
word_list = [x.replace(',', '').replace('.', '') for x in np.unique([x for y in word_list for x in y])]
# Generate random word descriptions.
descr_list = [' '.join(x for x in np.random.choice(word_list, mean_len, replace=True)) for _ in range(len(descr_list))]
# Fill description dictionary.
gpt_descriptions = {
key: list(np.random.choice(descr_list, np.min([len(descr_list), num_rand_descr_per_class]), replace=False)) for key in gpt_descriptions.keys()}
gpt_descriptions = {key: [structured_descriptor_builder(item, key) for item in class_descr_list] for key, class_descr_list in gpt_descriptions.items()}
### Use DCLIP where every class uses the same set of random words.
if mode == 'shared_random_description_words':
# Average word length.
mean_len = int(np.ceil(np.mean([len(x.split(' ')) for x in descr_list])))
word_list = [x.split(' ') for x in descr_list]
word_list = [x.replace(',', '').replace('.', '') for x in np.unique([x for y in word_list for x in y])]
# Replace description list with random sequences of words.
descr_list = [' '.join(x for x in np.random.choice(word_list, mean_len, replace=True)) for _ in range(len(descr_list))]
# Average number of descriptions per class.
num_samples = int(np.ceil(len(descr_list)/len(gpt_descriptions))) * opt.randomization_budget
replace = False if num_samples <= len(descr_list) else True
list_shared_word_seqs = np.random.choice(descr_list, num_samples, replace=replace)
gpt_descriptions = {key: list_shared_word_seqs for key in gpt_descriptions.keys()}
gpt_descriptions = {key: [structured_descriptor_builder(item, key) for item in class_descr_list] for key, class_descr_list in gpt_descriptions.items()}
### Use DCLIP with randomly assigned characters.
if mode == 'adaptive_random_characters':
# (Lazy solution) Extract list of available random characters from gpt description list. Ideally we utilize a separate list.
character_list = [x.split(' ') for x in descr_list]
character_list = [x.replace(',', '').replace('.', '') for x in np.unique([x for y in character_list for x in y])]
character_list = np.unique(list(''.join(character_list)))
# Fill description dictionary.
gpt_descriptions = {key: [] for key in gpt_descriptions.keys()}
num_spaces = int(np.round(np.mean([np.sum(np.array(list(x)) == ' ') for x in key_list]))) + 1
num_chars = int(np.ceil(np.mean([np.max([len(y) for y in x.split(' ')]) for x in key_list])))
num_chars += num_spaces - num_chars%num_spaces
sample_key = ''
for s in range(num_spaces):
for _ in range(num_chars//num_spaces):
sample_key += 'a'
if s < num_spaces - 1:
sample_key += ' '
for key in key_list:
for _ in range(opt.waffle_count):
word = ''
# use_key = sample_key if len(key) >= len(sample_key) else key
for c in sample_key:
if c != ' ':
word += np.random.choice(character_list, 1, replace=False)[0]
else:
word += ', '
gpt_descriptions[key].append(word)
gpt_descriptions = {key: [structured_descriptor_builder(item, key) for item in class_descr_list] for key, class_descr_list in gpt_descriptions.items()}
### Use DCLIP with randomly assigned characters.
if mode == 'waffle_characters':
# (Lazy solution) Extract list of available random characters from gpt description list. Ideally we utilize a separate list.
character_list = [x.split(' ') for x in descr_list]
character_list = [x.replace(',', '').replace('.', '') for x in np.unique([x for y in character_list for x in y])]
character_list = np.unique(list(''.join(character_list)))
# Fill description dictionary.
gpt_descriptions = {key: [] for key in gpt_descriptions.keys()}
num_spaces = int(np.round(np.mean([np.sum(np.array(list(x)) == ' ') for x in key_list]))) + 1
num_chars = int(np.ceil(np.mean([np.max([len(y) for y in x.split(' ')]) for x in key_list])))
num_chars += num_spaces - num_chars%num_spaces
sample_key = ''
for s in range(num_spaces):
for _ in range(num_chars//num_spaces):
sample_key += 'a'
if s < num_spaces - 1:
sample_key += ' '
for key in key_list:
for _ in range(opt.waffle_count):
word = ''
# use_key = sample_key if len(key) >= len(sample_key) else key
for c in sample_key:
if c != ' ':
word += np.random.choice(character_list, 1, replace=False)[0]
else:
word += ', '
gpt_descriptions[key].append(word)
gpt_descriptions = {key: [structured_descriptor_builder(item, key) for item in class_descr_list] for key, class_descr_list in gpt_descriptions.items()}
# gpt_descriptions = {key: [generic_descriptor_builder(item, key) for item in class_descr_list] for key, class_descr_list in gpt_descriptions.items()}
match_key = np.random.choice(key_list)
gpt_descriptions = {key: gpt_descriptions[match_key] for key in key_list}
for key in gpt_descriptions:
gpt_descriptions[key] = [x.replace(wordify(match_key), wordify(key)) for x in gpt_descriptions[key]]
### Use DCLIP with randomly assigned characters and words (every class gets its own random subset).
if mode == 'adaptive_randomness':
import pickle as pkl
word_list = pkl.load(open('word_list.pkl', 'rb'))
avg_num_words = int(np.max([np.round(np.mean([len(wordify(x).split(' ')) for x in key_list])), 1]))
avg_word_length = int(np.round(np.mean([np.mean([len(y) for y in wordify(x).split(' ')]) for x in key_list])))
word_list = [x[:avg_word_length] for x in word_list]
# (Lazy solution) Extract list of available random characters from gpt description list. Ideally we utilize a separate list.
character_list = [x.split(' ') for x in descr_list]
character_list = [x.replace(',', '').replace('.', '') for x in np.unique([x for y in character_list for x in y])]
character_list = np.unique(list(''.join(character_list)))
num_spaces = int(np.round(np.mean([np.sum(np.array(list(x)) == ' ') for x in key_list]))) + 1
num_chars = int(np.ceil(np.mean([np.max([len(y) for y in x.split(' ')]) for x in key_list])))
num_chars += num_spaces - num_chars%num_spaces
sample_key = ''
for s in range(num_spaces):
for _ in range(num_chars//num_spaces):
sample_key += 'a'
if s < num_spaces - 1:
sample_key += ' '
gpt_descriptions = {key: [] for key in gpt_descriptions.keys()}
for key in key_list:
for _ in range(opt.waffle_count):
base_word = ''
for a in range(avg_num_words):
base_word += np.random.choice(word_list, 1, replace=False)[0]
if a < avg_num_words - 1:
base_word += ' '
gpt_descriptions[key].append(structured_descriptor_builder(base_word, key))
# gpt_descriptions[key].append(structured_descriptor_builder(base_word, key))
# gpt_descriptions[key].append(generic_descriptor_builder('', key)[:-3] + '.')
noise_word = ''
use_key = sample_key if len(key) >= len(sample_key) else key
for c in sample_key:
if c != ' ':
noise_word += np.random.choice(character_list, 1, replace=False)[0]
else:
noise_word += ', '
gpt_descriptions[key].append(structured_descriptor_builder(noise_word, key))
### Use DCLIP with randomly assigned characters and words (every class gets the same random subset).
if mode == 'waffle':
import pickle as pkl
word_list = pkl.load(open('word_list.pkl', 'rb'))
avg_num_words = int(np.max([np.round(np.mean([len(wordify(x).split(' ')) for x in key_list])), 1]))
avg_word_length = int(np.round(np.mean([np.mean([len(y) for y in wordify(x).split(' ')]) for x in key_list])))
word_list = [x[:avg_word_length] for x in word_list]
# (Lazy solution) Extract list of available random characters from gpt description list. Ideally we utilize a separate list.
character_list = [x.split(' ') for x in descr_list]
character_list = [x.replace(',', '').replace('.', '') for x in np.unique([x for y in character_list for x in y])]
character_list = np.unique(list(''.join(character_list)))
num_spaces = int(np.round(np.mean([np.sum(np.array(list(x)) == ' ') for x in key_list]))) + 1
num_chars = int(np.ceil(np.mean([np.max([len(y) for y in x.split(' ')]) for x in key_list])))
num_chars += num_spaces - num_chars%num_spaces
sample_key = ''
for s in range(num_spaces):
for _ in range(num_chars//num_spaces):
sample_key += 'a'
if s < num_spaces - 1:
sample_key += ' '
gpt_descriptions = {key: [] for key in gpt_descriptions.keys()}
for key in key_list:
for _ in range(opt.waffle_count):
base_word = ''
for a in range(avg_num_words):
base_word += np.random.choice(word_list, 1, replace=False)[0]
if a < avg_num_words - 1:
base_word += ' '
gpt_descriptions[key].append(structured_descriptor_builder(base_word, key))
noise_word = ''
use_key = sample_key if len(key) >= len(sample_key) else key
for c in sample_key:
if c != ' ':
noise_word += np.random.choice(character_list, 1, replace=False)[0]
else:
noise_word += ', '
gpt_descriptions[key].append(structured_descriptor_builder(noise_word, key))
match_key = np.random.choice(key_list)
gpt_descriptions = {key: gpt_descriptions[match_key] for key in key_list}
for key in gpt_descriptions:
gpt_descriptions[key] = [x.replace(wordify(match_key), wordify(key)) for x in gpt_descriptions[key]]
### Use DCLIP with randomly assigned characters, words and GPT Descriptions (every class gets a different random subset, but tretains heir respective class descriptions).
### However, each descriptor set is subsampled to match the required descriptor budget, so per class, descriptors may still vary a bit.
if mode == 'adaptive_randomness_and_gpt_descriptions':
import pickle as pkl
word_list = pkl.load(open('word_list.pkl', 'rb'))
avg_num_words = int(np.max([np.round(np.mean([len(wordify(x).split(' ')) for x in key_list])), 1]))
avg_word_length = int(np.round(np.mean([np.mean([len(y) for y in wordify(x).split(' ')]) for x in key_list])))
word_list = [x[:avg_word_length] for x in word_list]
# (Lazy solution) Extract list of available random characters from gpt description list. Ideally we utilize a separate list.
character_list = [x.split(' ') for x in descr_list]
character_list = [x.replace(',', '').replace('.', '') for x in np.unique([x for y in character_list for x in y])]
character_list = np.unique(list(''.join(character_list)))
num_spaces = int(np.round(np.mean([np.sum(np.array(list(x)) == ' ') for x in key_list]))) + 1
num_chars = int(np.ceil(np.mean([np.max([len(y) for y in x.split(' ')]) for x in key_list])))
num_chars += num_spaces - num_chars%num_spaces
sample_key = ''
for s in range(num_spaces):
for _ in range(num_chars//num_spaces):
sample_key += 'a'
if s < num_spaces - 1:
sample_key += ' '
base_gpt_descriptions = {key: items for key, items in gpt_descriptions.items()}
all_descr = [values for values in base_gpt_descriptions.values()]
all_descr = [x for y in all_descr for x in y]
gpt_descriptions = {key: [] for key in gpt_descriptions.keys()}
#Because we now go from two descriptor options to three:
effective_waffle_count = int(2/3 * opt.waffle_count)
for key in key_list:
for sc in range(effective_waffle_count):
base_word = ''
for a in range(avg_num_words):
base_word += np.random.choice(word_list, 1, replace=False)[0]
if a < avg_num_words - 1:
base_word += ' '
gpt_descriptions[key].append(structured_descriptor_builder(base_word, key))
noise_word = ''
for c in sample_key:
if c != ' ':
noise_word += np.random.choice(character_list, 1, replace=False)[0]
else:
noise_word += ', '
gpt_descriptions[key].append(structured_descriptor_builder(noise_word, key))
word = np.random.choice(base_gpt_descriptions[key], 1)[0]
gpt_descriptions[key].append(structured_descriptor_builder(word, key))
word = np.random.choice(base_gpt_descriptions[key], 1)[0]
gpt_descriptions[key].append(structured_descriptor_builder(word, key))
for key in key_list:
gpt_descriptions[key] = list(np.random.choice(gpt_descriptions[key], effective_waffle_count * 3, replace=False))
### Use DCLIP with randomly assigned characters, words and GPT Descriptions (every class gets the same random subset, but tretains heir respective class descriptions).
### However, each descriptor set is subsampled to match the required descriptor budget, so per class, descriptors may still vary a bit.
if mode == 'waffle_and_gpt':
import pickle as pkl
word_list = pkl.load(open('word_list.pkl', 'rb'))
avg_num_words = int(np.max([np.round(np.mean([len(wordify(x).split(' ')) for x in key_list])), 1]))
avg_word_length = int(np.round(np.mean([np.mean([len(y) for y in wordify(x).split(' ')]) for x in key_list])))
word_list = [x[:avg_word_length] for x in word_list]
# (Lazy solution) Extract list of available random characters from gpt description list. Ideally we utilize a separate list.
character_list = [x.split(' ') for x in descr_list]
character_list = [x.replace(',', '').replace('.', '') for x in np.unique([x for y in character_list for x in y])]
character_list = np.unique(list(''.join(character_list)))
num_spaces = int(np.round(np.mean([np.sum(np.array(list(x)) == ' ') for x in key_list]))) + 1
num_chars = int(np.ceil(np.mean([np.max([len(y) for y in x.split(' ')]) for x in key_list])))
num_chars += num_spaces - num_chars%num_spaces
sample_key = ''
for s in range(num_spaces):
for _ in range(num_chars//num_spaces):
sample_key += 'a'
if s < num_spaces - 1:
sample_key += ' '
base_gpt_descriptions = {key: items for key, items in gpt_descriptions.items()}
all_descr = [values for values in base_gpt_descriptions.values()]
all_descr = [x for y in all_descr for x in y]
gpt_descriptions = {key: [] for key in gpt_descriptions.keys()}
effective_waffle_count = int(2/3 * opt.waffle_count)
for key in key_list:
for sc in range(effective_waffle_count):
base_word = ''
for a in range(avg_num_words):
base_word += np.random.choice(word_list, 1, replace=False)[0]
if a < avg_num_words - 1:
base_word += ' '
gpt_descriptions[key].append(structured_descriptor_builder(base_word, key))
noise_word = ''
for c in sample_key:
if c != ' ':
noise_word += np.random.choice(character_list, 1, replace=False)[0]
else:
noise_word += ', '
gpt_descriptions[key].append(structured_descriptor_builder(noise_word, key))
match_key = np.random.choice(key_list)
gpt_descriptions = {key: gpt_descriptions[match_key] for key in key_list}
for key in gpt_descriptions:
gpt_descriptions[key] = [x.replace(wordify(match_key), wordify(key)) for x in gpt_descriptions[key]]
# For every random character and word descriptor pair, we add a GPT descriptor
# sampled from the list of available descriptors.
for key in key_list:
for sc in range(effective_waffle_count):
word = np.random.choice(base_gpt_descriptions[key], 1)[0]
gpt_descriptions[key].append(structured_descriptor_builder(word, key))
word = np.random.choice(base_gpt_descriptions[key], 1)[0]
gpt_descriptions[key].append(structured_descriptor_builder(word, key))
# To ensure the correct number of random word sequences, random character sequences and GPT descriptions, we
# subsample for each class individually. This does result in slightly different descriptor distributions per class.
for key in key_list:
gpt_descriptions[key] = list(np.random.choice(gpt_descriptions[key], effective_waffle_count * 3, replace=False))
### Using a simple prompt ensemble.
if mode == 'prompt_ensemble':
gpt_descriptions = {key: [] for key in key_list}
effective_waffle_count = opt.waffle_count * 2
prompt_idcs = np.random.choice(len(prompt_ensemble), effective_waffle_count, replace=True)
prompt_idcs, prompt_counts = np.unique(prompt_idcs, return_counts=True)
prompt_idcs = {idx: count for idx, count in zip(prompt_idcs, prompt_counts)}
for key in key_list:
for i, prompt in enumerate(prompt_ensemble):
if i in prompt_idcs:
for _ in range(prompt_idcs[i]):
gpt_descriptions[key].append(prompt.format(wordify(key)) + opt.label_after_text)
### Using a simple prompt ensemble alongside DCLIP.
if mode == 'gpt_descriptions_and_prompt_ensemble':
effective_waffle_count = opt.waffle_count * 2
prompt_idcs = np.random.choice(len(prompt_ensemble), effective_waffle_count, replace=True)
prompt_idcs, prompt_counts = np.unique(prompt_idcs, return_counts=True)
prompt_idcs = {idx: count for idx, count in zip(prompt_idcs, prompt_counts)}
for key in key_list:
descr_coll = []
for i, prompt in enumerate(prompt_ensemble):
if i in prompt_idcs:
for _ in range(prompt_idcs[i]):
descr = np.random.choice(gpt_descriptions[key])
prompt_builder = lambda item, cls: f"{opt.pre_descriptor_text}{prompt.format(wordify(cls))}{opt.descriptor_separator}{modify_descriptor(item, opt.apply_descriptor_modification)}{opt.label_after_text}"
descr_coll.append(prompt_builder(descr, key))
gpt_descriptions[key] = descr_coll
### Using a simple prompt ensemble alongside WaffleCLIP.
if mode == 'waffle_and_prompt_ensemble':
import pickle as pkl
word_list = pkl.load(open('word_list.pkl', 'rb'))
avg_num_words = int(np.max([np.round(np.mean([len(wordify(x).split(' ')) for x in key_list])), 1]))
avg_word_length = int(np.round(np.mean([np.mean([len(y) for y in wordify(x).split(' ')]) for x in key_list])))
word_list = [x[:avg_word_length] for x in word_list]
# (Lazy solution) Extract list of available random characters from gpt description list. Ideally we utilize a separate list.
character_list = [x.split(' ') for x in descr_list]
character_list = [x.replace(',', '').replace('.', '') for x in np.unique([x for y in character_list for x in y])]
character_list = np.unique(list(''.join(character_list)))
num_spaces = int(np.round(np.mean([np.sum(np.array(list(x)) == ' ') for x in key_list]))) + 1
num_chars = int(np.ceil(np.mean([np.max([len(y) for y in x.split(' ')]) for x in key_list])))
num_chars += num_spaces - num_chars%num_spaces
sample_key = ''
for s in range(num_spaces):
for _ in range(num_chars//num_spaces):
sample_key += 'a'
if s < num_spaces - 1:
sample_key += ' '
gpt_descriptions = {key: [] for key in gpt_descriptions.keys()}
effective_prompt_waffle_count = opt.waffle_count
prompt_idcs = np.random.choice(len(prompt_ensemble), effective_prompt_waffle_count, replace=True)
prompt_idcs, prompt_counts = np.unique(prompt_idcs, return_counts=True)
prompt_idcs = {idx: count for idx, count in zip(prompt_idcs, prompt_counts)}
for key in key_list:
for i, prompt in enumerate(prompt_ensemble):
if i in prompt_idcs:
for _ in range(prompt_idcs[i]):
prompt_builder = lambda item, cls: f"{opt.pre_descriptor_text}{prompt.format(wordify(cls))}{opt.descriptor_separator}{modify_descriptor(item, opt.apply_descriptor_modification)}{opt.label_after_text}"
base_word = ''
for a in range(avg_num_words):
base_word += np.random.choice(word_list, 1, replace=False)[0]
if a < avg_num_words - 1:
base_word += ' '
gpt_descriptions[key].append(prompt_builder(base_word, key))
noise_word = ''
for c in sample_key:
if c != ' ':
noise_word += np.random.choice(character_list, 1, replace=False)[0]
else:
noise_word += ', '
gpt_descriptions[key].append(prompt_builder(noise_word, key))
match_key = np.random.choice(key_list)
gpt_descriptions = {key: gpt_descriptions[match_key] for key in key_list}
for key in gpt_descriptions:
gpt_descriptions[key] = [x.replace(wordify(match_key), wordify(key)) for x in gpt_descriptions[key]]
### Using a simple prompt ensemble alongside WaffleCLIP and DCLIP.
if mode == 'context_prompt_ensemble':
gpt_descriptions = {key: [] for key in key_list}
effective_waffle_count = opt.waffle_count * 2
prompt_idcs = np.random.choice(len(prompt_ensemble), effective_waffle_count, replace=True)
prompt_idcs, prompt_counts = np.unique(prompt_idcs, return_counts=True)
prompt_idcs = {idx: count for idx, count in zip(prompt_idcs, prompt_counts)}
for key in key_list:
for i, prompt in enumerate(prompt_ensemble):
if i in prompt_idcs:
for _ in range(prompt_idcs[i]):
use_key = opt.label_before_text.split("A photo of a ")[-1].split(':')[0]
use_key = use_key + ': a ' + wordify(key)
gpt_descriptions[key].append(prompt.format(use_key) + opt.label_after_text)
### If a specific class subset should be used, we subsample here:
if classes_to_load is not None:
gpt_descriptions = {c: gpt_descriptions[c] for c in classes_to_load}
keys_to_remove = [k for k in gpt_descriptions.keys() if k not in classes_to_load]
for k in keys_to_remove:
print(f"Skipping descriptions for \"{k}\", not in classes to load")
gpt_descriptions.pop(k)
### Because of the inconsistent class naming, we have to do some re-sorting of the keys.
if opt.dataset == 'pets':
sorted_keys = np.array(list(gpt_descriptions.keys()))[np.argsort([x.lower() for x in gpt_descriptions.keys()])]
gpt_descriptions = {key: gpt_descriptions[key] for key in sorted_keys}
### Only produce sample prompt if in the right call.
### > Want to avoid printing prompts several times.
if mode == opt.mode:
sel_prompt = gpt_descriptions[key_list[1]]
if isinstance(sel_prompt, list):
sel_prompt = sel_prompt[0]
print(f'Sample Prompt: {sel_prompt}')
return gpt_descriptions
def compute_description_encodings(opt: argparse.Namespace, model: Any, mode: str='clip'):
gpt_descriptions = load_gpt_descriptions(opt, opt.classes_to_load, mode=mode)
description_encodings = OrderedDict()
for k, v in tqdm.tqdm(gpt_descriptions.items(), total=len(gpt_descriptions), desc='Encoding Descriptions...'):
description_encodings[k] = F.normalize(model.encode_text(clip.tokenize(v).to(opt.device)))
return description_encodings
def aggregate_similarity(similarity_matrix_chunk: torch.Tensor, aggregation_method: str='mean'):
if aggregation_method == 'max':
return similarity_matrix_chunk.max(dim=1)[0]
elif aggregation_method == 'sum':
return similarity_matrix_chunk.sum(dim=1)
elif aggregation_method == 'mean':
return similarity_matrix_chunk.mean(dim=1)
else: raise ValueError("Unknown aggregate_similarity")
prompt_ensemble = [
'A bad photo of a {}',
'A photo of many {}',
'A sculpture of a {}',
'A photo of the hard to see {}',
'A low resolution photo of the {}',
'A rendering of a {}',
'Graffiti of a {}',
'A bad photo of the {}',
'A cropped photo of the {}',
'A tattoo of a {}',
'The embroidered {}',
'A photo of a hard to see {}',
'A bright photo of a {}',
'A photo of a clean {}',
'A photo of a dirty {}',
'A dark photo of the {}',
'A drawing of a {}',
'A photo of my {}',
'The plastic {}',
'A photo of the cool {}',
'A close-up photo of a {}',
'A black and white photo of the {}',
'A painting of the {}',
'A painting of a {}',
'A pixelated photo of the {}',
'A sculpture of the {}',
'A bright photo of the {}',
'A cropped photo of a {}',
'A plastic {}',
'A photo of the dirty {}',
'A jpeg corrupted photo of a {}',
'A blurry photo of the {}',
'A photo of the {}',
'A good photo of the {}',
'A rendering of the {}',
'A {} in a video game',
'A photo of one {}',
'A doodle of a {}',
'A close-up photo of the {}',
'A photo of a {}',
'The origami {}',
'The {} in a video game',
'A sketch of a {}',
'A doodle of the {}',
'A origami {}',
'A low resolution photo of a {}',
'The toy {}',
'A rendition of the {}',
'A photo of the clean {}',
'A photo of a large {}',
'A rendition of a {}',
'A photo of a nice {}',
'A photo of a weird {}',
'A blurry photo of a {}',
'A cartoon {}',
'Art of a {}',
'A sketch of the {}',
'A embroidered {}',
'A pixelated photo of a {}',
'Itap of the {}',
'A jpeg corrupted photo of the {}',
'A good photo of a {}',
'A plushie {}',
'A photo of the nice {}',
'A photo of the small {}',
'A photo of the weird {}',
'The cartoon {}',
'Art of the {}',
'A drawing of the {}',
'A photo of the large {}',
'A black and white photo of a {}',
'The plushie {}',
'A dark photo of a {}',
'Itap of a {}',
'Graffiti of the {}',
'A toy {}',
'Itap of my {}',
'A photo of a cool {}',
'A photo of a small {}',
'A tattoo of the {}',
]
openai_imagenet_classes = ["tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", "smooth newt", "eft",
"spotted salamander", "axolotl", "American bullfrog", "tree frog", "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", "box turtle", "banded gecko", "green iguana", "Carolina anole", "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", "American alligator", "triceratops", "worm snake", "ring-necked snake", "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", "Australian Terrier", "Dandie Dinmont Terrier",
"Boston Terrier", "Miniature Schnauzer", "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", "black-footed ferret", "otter", "skunk", "badger", "armadillo",
"three-toed sloth", "orangutan", "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", "feather boa", "filing cabinet", "fireboat",
"fire truck", "fire screen", "flagpole", "flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", "freight car", "French horn", "frying pan", "fur coat", "garbage truck", "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", "mailbox","maillot",
"one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", "printer", "prison", "projectile", "projector", "hockey puck", "punching bag", "purse", "quill", "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", "submarine", "suit", "sundial",
"sunglass", "sunglasses", "sunscreen", "suspension bridge", "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper"]