-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
336 lines (265 loc) · 12.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
'''
Author: Fasil Cheema
Purpose: This module is the main point of execution for this
repository.
This code is based/inspired off the paper and repo SRGNN:
(Zhu, Qi, et al. "Shift-robust gnns: Overcoming the ...
... limitations of localized graph training data." ...
... Advances in Neural Information Processing
... Systems 34 (2021): 27965-27977.)
'''
import dgl
import utils
import torch
import numpy as np
import torch.nn as nn
import networkx as nx
import argparse, pickle
import scipy.sparse as sp
import torch.nn.functional as F
import matplotlib.pyplot as plt
from sklearn import preprocessing
from cvxopt import matrix, solvers
from collections import defaultdict
from sklearn.metrics import f1_score
from models import GCN, GraphSAGE, PPRPowerIteration, SGC, GAT
from matrixtools import compute_acc, cmd, l2diff, moment_diff, cross_entropy, pairwise_distances, MMD, KMM, calc_feat_smooth, calc_emb_smooth, calc_A_hat
def main(args, new_classes):
max_train = 20
verbose = args.verbose
device = torch.device("cpu")
unk = False
if args.dataset in ['cora', 'citeseer', 'pubmed']:
adj, features, one_hot_labels, ori_idx_train, idx_val, idx_test = utils.data_loader(args.dataset)
labels = [np.where(r==1)[0][0] if r.sum() > 0 else -1 for r in one_hot_labels]
features = torch.FloatTensor(utils.preprocess_features(features))
min_max_scaler = preprocessing.MinMaxScaler()
features = F.normalize(features, p=1,dim=1)
#feat_smooth_matrix = calc_feat_smooth(adj, features)
nx_g = nx.Graph(adj+ sp.eye(adj.shape[0]))
g = dgl.from_networkx(nx_g)
else:
raise ValueError("wrong dataset name")
ft_size = features.shape[1]
labels = torch.LongTensor(labels)
nb_classes = max(labels).item() + 1
cross_ent_x = nn.CrossEntropyLoss(reduction='none')
print('number of classes {}'.format(nb_classes))
best_val_acc = 0
cnt_wait = 0
finetune = False
in_acc, out_acc, micro_f1, macro_f1 = [], [], [], []
num_seeds = []
all_runs_data = defaultdict(list)
feature_smoothness = []
embedding_smoothness = []
avg_dist, max_dist = [], []
if not(args.pretrain == 'none'):
train_dump = pickle.load(open(args.pretrain))
else:
train_dump = pickle.load(open('intermediate/{}_dump.p'.format(args.dataset), 'rb'))
ppr_vector = train_dump['ppr_vector']
ppr_dist = train_dump['ppr_dist']
avg_mmd_dist = []
training_seeds_run = pickle.load(open('data/localized_seeds_{}.p'.format(args.dataset), 'rb'))
#This loop generates biased data repeatedly for training
for curr_iter in range(args.n_repeats):
#Generate biased training data
if args.biased_sample:
idx_train = training_seeds_run[curr_iter]
label_balance_constraints = np.zeros((labels.max().item()+1, len(idx_train)))
for i, idx in enumerate(idx_train):
label_balance_constraints[labels[idx], i] = 1
all_idx = set(range(g.number_of_nodes())) - set(idx_train)
if args.dataset == 'cora':
idx_test = list(all_idx)
iid_train, _, _, _, _, _ = utils.createDBLPTraining(one_hot_labels, ori_idx_train, idx_val, idx_test, max_train = max_train)
#uses personalized page rank to generate the biased data
if args.arch >= 3:
kmm_weight, MMD_dist = KMM(ppr_vector[idx_train, :], ppr_vector[iid_train, :], label_balance_constraints)
else:
idx_seed = np.random.randint(0,features.shape[0])
idx_train, _, _, _, _, _ = utils.createDBLPTraining(one_hot_labels, ori_idx_train, idx_val, idx_test, max_train = max_train, new_classes=new_classes, unknown=unk)
all_idx = set(range(g.number_of_nodes())) - set(idx_train)
label_balance_constraints = np.zeros((labels.max().item()+1, len(idx_train)))
for i, idx in enumerate(idx_train):
label_balance_constraints[labels[idx], i] = 1
test_lbls = labels[idx_test]
train_lbls = labels[idx_train]
reg_lbls = torch.cat([torch.ones(len(idx_train), dtype=torch.long), torch.zeros(len(idx_train), dtype=torch.long)])
#Initializes the model based off the selected GNN architecture
# can alternatively also implement F.relu
if args.gnn == 'graphsage':
model = GraphSAGE(g,
ft_size,
args.n_hidden,
nb_classes,
args.n_layers,
F.relu,
args.dropout,
args.aggregator_type
)
elif args.gnn == 'gat':
num_heads = args.nheads
model = GAT(g,
ft_size,
args.n_hidden,
nb_classes,
args.n_layers,
F.tanh,
args.dropout,
num_heads
)
elif args.gnn == 'ppnp':
model = PPRPowerIteration(ft_size, args.n_hidden, nb_classes, adj, alpha=0.1, niter=10, drop_prob=args.dropout)
elif args.gnn == 'sgc':
train_mask = 0.5
model = SGC(g,
ft_size,
args.n_hidden,
nb_classes,
args.n_layers,
F.tanh,
args.dropout,
train_mask
)
else:
model = GCN(g,
ft_size,
args.n_hidden,
nb_classes,
args.n_layers,
F.tanh,
args.dropout,
args.aggregator_type
)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
model
best_acc, best_epoch = 0.0, 0.0
plot_x, plot_y, plot_z = [], [], []
for epoch in range(args.n_epochs):
if args.arch == 4 and epoch % 20 == 1:
kmm_weight, MMD_dist = KMM(model.h[idx_train, :].detach().cpu(), model.h[idx_test, :].detach().cpu(), label_balance_constraints)
model.train()
optimizer.zero_grad()
logits = model(features)
loss = cross_ent_x(logits[idx_train], labels[idx_train])
#If we employ SR (Shift Robustness) we use the cmd and mmd terms in the loss
# these modified loss functions use the iid and idx generated data.
if args.arch == 0:
loss = loss.mean()
total_loss = loss
elif args.arch == 1:
loss = loss.mean()
total_loss = loss + 1 * MMD(model.h[idx_train, :], model.h[idx_test, :])
elif args.arch == 2:
loss = loss.mean()
total_loss = loss + 1 * cmd(model.h[idx_train, :], model.h[iid_train, :])
elif args.arch in [3,4]:
loss = (torch.Tensor(kmm_weight).reshape(-1) * (loss)).mean()
total_loss = loss + 1 * cmd(model.h[idx_train, :], model.h[iid_train, :])
elif args.arch == 5:
loss = (torch.Tensor(kmm_weight).reshape(-1) * (loss)).mean()
total_loss = loss
if verbose and epoch % 1 == 0:
plot_x.append(epoch)
plot_y.append(loss.item())
plot_z.append(cmd(model.h[idx_train, :], model.h[idx_test, :]).item())
if verbose and epoch % 50 == 0:
print("current MMD is {}".format(MMD(logits[idx_train, :], logits[idx_test, :]).detach().cpu().item()))
print("current CMD is {}".format(cmd(model.h[idx_train, :], model.h[idx_test, :]).detach().cpu().item()))
total_loss.backward()
optimizer.step()
with torch.no_grad():
if verbose and epoch % 50 == 0:
model.eval()
logits = model(features)
preds_all = torch.argmax(logits, dim=1)
acc_val = f1_score(labels[idx_val].cpu(), preds_all[idx_val].cpu(), average='micro')
print(epoch, total_loss.item(), loss.item(), acc_val)
if acc_val > best_acc:
best_acc = acc_val
best_epoch = epoch
torch.save(model.state_dict(), 'best_model_{}.pt'.format(args.dataset))
model.eval()
embeds = model(features).detach()
logits = embeds[idx_test]
preds_all = torch.argmax(embeds, dim=1)
embeds = embeds.cpu()
micro_f1.append(f1_score(labels[idx_test].cpu(), preds_all[idx_test].cpu(), average='micro'))
macro_f1.append(f1_score(labels[idx_test].cpu(), preds_all[idx_test].cpu(), average='macro'))
if verbose:
print('iteration:')
print(curr_iter)
return micro_f1, macro_f1, avg_mmd_dist
if __name__ == '__main__':
rand_seed = 7
parser = argparse.ArgumentParser(description='SR-GNN')
parser.add_argument("--dropout", type=float, default=0.0,
help="dropout probability")
parser.add_argument("--verbose", type=bool, default=True,
help="verbose")
parser.add_argument("--lr", type=float, default=1e-2,
help="learning rate")
parser.add_argument("--gnn", type=str, default='gcn',
help="gnn arch of gcn/gat/graphsage")
parser.add_argument("--SR", type=bool, default=False,
help="use shift-robust or not")
parser.add_argument("--arch", type=int, default=0,
help="use which variant of the model")
parser.add_argument("--biased-sample", type=bool, default=False,
help="use biased (non IID) training data")
parser.add_argument("--n-epochs", type=int, default=200,
help="number of training epochs")
parser.add_argument("--n-hidden", type=int, default=128,
help="number of hidden gcn units")
parser.add_argument("--n-layers", type=int, default=1,
help="number of hidden gcn layers")
parser.add_argument("--weight-decay", type=float, default=0,
help="Weight for L2 loss")
parser.add_argument("--n-repeats", type=int, default=20,
help="number of runs to gen data")
parser.add_argument("--aggregator-type", type=str, default="gcn",
help="Aggregator type: mean/gcn/pool/lstm")
parser.add_argument('--dataset',type=str, default='cora')
parser.add_argument('--new-classes', type=list, default=[])
parser.add_argument('--sc', type=float, default=0.0, help='GCN self connection')
parser.add_argument('--pretrain',type=str, default='none')
parser.add_argument('--nheads',type=int, default=4)
parser.add_argument('--mmd',type=bool, default=False)
args = parser.parse_args()
#Random seed initialization
torch.manual_seed(rand_seed)
np.random.seed(rand_seed)
#The number of classes necessary to define the model architecture in the softmax layer
if args.dataset == 'cora':
num_class = 7
elif args.dataset == 'citeseer':
num_class = 6
elif args.dataset == 'ppi':
num_class = 9
elif args.dataset == 'dblp':
num_class = 5
#Decides which architecture to use depending on if we want to add the Shift Robustness
if args.SR and args.gnn == 'ppnp':
args.arch = 3
elif args.SR:
args.arch = 2
else:
args.arch = 0
if args.mmd == True:
args.arch = 1
#Note in_acc is ignored
in_acc, out_acc, micro_f1, macro_f1 = [], [], [], []
micro_f1, macro_f1, out_acc = main(args, [])
torch.cuda.empty_cache()
print(np.mean(in_acc), np.std(in_acc), np.mean(out_acc), np.std(out_acc))
print("arch {}:".format(args.gnn), np.mean(micro_f1), np.std(micro_f1), np.mean(macro_f1), np.std(macro_f1))
#This plot is meaningless
'''
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(X, Y, Z, color='white', edgecolors='grey', alpha=0.5)
ax.scatter(X, Y, Z, c='red')
plt.show()
'''