forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_nestedtensor.py
534 lines (472 loc) · 20.4 KB
/
test_nestedtensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# Owner(s): ["module: nestedtensor"]
import torch
import torch.nn
import unittest
from torch.testing._internal.common_device_type import (
dtypes,
dtypesIfCUDA,
instantiate_device_type_tests,
skipMeta,
)
from torch.testing._internal.common_utils import TestCase, IS_FBCODE, run_tests
from torch import nested_tensor
# Tests are ported from pytorch/nestedtensor.
# This makes porting as_nested_tensor easier in the future.
def _iter_constructors():
# yield as_nested_tensor
yield nested_tensor
class TestNestedTensor(TestCase):
@torch.inference_mode()
def _test_unbind_case(self, a, b):
nt = nested_tensor([a, b])
a1, b1 = nt.unbind()
self.assertTrue(a is not a1)
self.assertTrue(b is not b1)
nt = nested_tensor([a, b], dtype=a.dtype)
a1, b1 = nt.unbind(0)
self.assertEqual(a, a1)
self.assertEqual(b, b1)
a = torch.randn((2, 3)).add_(1)
nt = nested_tensor([a])
self.assertEqual(a, nt.unbind(0)[0])
@torch.inference_mode()
def test_unbind_0(self):
self._test_unbind_case(
torch.tensor([1, 2]), torch.tensor([7, 8]),
)
@torch.inference_mode()
def test_unbind_1(self):
self._test_unbind_case(
torch.tensor([1]), torch.tensor([7]),
)
# @torch.inference_mode()
# def test_unbind_2(self):
# self._test_unbind_case(
# torch.tensor(1), torch.tensor(7),
# )
@torch.inference_mode()
def test_unbind_3(self):
self._test_unbind_case(
torch.tensor([1.0]), torch.tensor([]),
)
@torch.inference_mode()
def test_unbind_4(self):
self._test_unbind_case(
torch.tensor([]), torch.tensor([]),
)
@torch.inference_mode()
def test_unbind_dim(self):
def _test_fn(unbind_fn):
a = torch.rand(3, 2)
b = torch.rand(2, 3)
nt = nested_tensor([a, b])
self.assertRaises(RuntimeError, lambda: unbind_fn(nt, 1))
# Both of these tests are necessary, because we're using
# torch_function.
_test_fn(lambda x, dim: x.unbind(dim))
# TODO: Re-enable this once using torch_dispatch
# _test_fn(lambda x, dim: torch.unbind(x, dim))
@torch.inference_mode()
def test_nested_tensor(self):
self.assertRaises(TypeError, lambda: nested_tensor([3.0]))
self.assertRaises(TypeError, lambda: nested_tensor(torch.tensor([3.0])))
self.assertRaises(TypeError, lambda: nested_tensor(4.0))
@torch.inference_mode()
def test_nested_tensor_matching_dim(self):
self.assertRaisesRegex(
RuntimeError,
"Found dimension 1 for Tensor at index 1 and dimension 0 for Tensor at index 0.",
lambda: nested_tensor([torch.tensor(1.0), torch.tensor([])]),
)
self.assertRaisesRegex(
RuntimeError,
"Found dimension 1 for Tensor at index 2 and dimension 0 for Tensor at index 1.",
lambda: nested_tensor(
[torch.tensor(1.0), torch.tensor(2.0), torch.tensor([])]
),
)
@torch.inference_mode()
def test_default_nested_tensor(self):
self.assertRaises(TypeError, lambda: nested_tensor())
default_nested_tensor = nested_tensor([])
default_tensor = torch.tensor([])
# self.assertEqual(default_nested_tensor.nested_dim(), 1)
# self.assertEqual(default_nested_tensor.nested_size(), ())
self.assertEqual(default_nested_tensor.dim(), default_tensor.dim())
self.assertEqual(default_nested_tensor.layout, default_tensor.layout)
self.assertEqual(default_nested_tensor.device, default_tensor.device)
self.assertEqual(default_nested_tensor.dtype, default_tensor.dtype)
self.assertEqual(
default_nested_tensor.requires_grad, default_tensor.requires_grad
)
self.assertIsNone(default_tensor.grad)
# TODO: Re-enable once we have a performance driven
# use case and implementation.
# self.assertEqual(default_nested_tensor.is_pinned(),
# default_tensor.is_pinned())
@torch.inference_mode()
def test_dim(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertEqual(a1.dim(), 1)
a1 = constructor([torch.tensor(3.0)])
self.assertEqual(a1.dim(), 1)
a1 = constructor([torch.tensor([1, 2, 3, 4])])
self.assertEqual(a1.dim(), 2)
@unittest.skipIf(IS_FBCODE, "numel is not virtual in fbcode.")
@torch.inference_mode()
def test_numel(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError, "numel is disabled", lambda: a1.numel(),
)
@torch.inference_mode()
def test_size(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError,
"Tensors of type NestedTensorImpl do not have sizes"
if IS_FBCODE
else "NestedTensorImpl doesn't support sizes",
lambda: a1.size(),
)
@unittest.skipIf(IS_FBCODE, "stride is not virtual in fbcode.")
@torch.inference_mode()
def test_stride(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError,
"NestedTensorImpl doesn't support strides",
lambda: a1.stride(),
)
@unittest.skipIf(IS_FBCODE, "is_contiguous is not virtual in fbcode.")
@torch.inference_mode()
def test_is_contiguous(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError, "is_contiguous is disabled", lambda: a1.is_contiguous()
)
@torch.inference_mode()
def test_repr_string(self):
a = nested_tensor([])
expected = "nested_tensor([" "\n\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
a = nested_tensor([torch.tensor(1.0)])
expected = "nested_tensor([" "\n tensor(1.)" "\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
a = nested_tensor([torch.tensor([[1, 2]]), torch.tensor([[4, 5]])])
expected = (
"nested_tensor([" "\n tensor([[1, 2]])" "," "\n tensor([[4, 5]])" "\n])"
)
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
@torch.inference_mode()
def test_activations(self):
for func in (torch.nn.functional.relu, torch.nn.functional.relu_, torch.nn.functional.gelu, torch._C._nn.gelu_):
t = torch.tensor([-1, 0, 1], dtype=torch.float)
nt = nested_tensor([t])
nested_result = func(nt)
self.assertTrue(nested_result.is_nested)
self.assertEqual(func(t), nested_result.unbind()[0])
def test_to_padded_tensor_on_empty_tensor(self):
nt = torch.nested_tensor([])
empty = nt.to_padded_tensor(4)
self.assertEqual(empty, torch.tensor([]))
class TestNestedTensorDeviceType(TestCase):
@dtypes(torch.float)
@skipMeta
def test_to_then_from_padded_tensor_no_transform0213(self, device, dtype):
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
ts = list(torch.unbind(t))
ts[0] = ts[0][:-1]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
padded = nt.to_padded_tensor(0)
nt_to = torch._nested_from_padded_and_nested_example(padded, nt)
for (t1, t2) in zip(nt.unbind(), nt_to.unbind()):
self.assertEqual(t1, t2)
self.assertEqual(nt.device, nt_to.device)
@dtypes(torch.float)
@dtypesIfCUDA(torch.float, torch.half)
@skipMeta
@torch.inference_mode()
def test_layer_norm(self, device, dtype):
def _test(size):
t0 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False)
t1 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False)
ts = [t0, t1, t0, t1]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype)
nt_result = nt._nested_tensor_layer_norm(
layer_norm.weight, layer_norm.bias, 1e-5
)
for (nt_subresult, t) in zip(nt_result.unbind(), ts):
t_result = layer_norm(t.reshape(1, -1, size).squeeze(0))
self.assertEqual(nt_subresult, t_result)
for size in (1024, 1023, 513, 512, 256, 128, 2, 4, 32):
_test(size)
@skipMeta
@torch.inference_mode()
def test_embedding(self, device):
inputs = [
torch.randint(100, (L,), device=device, dtype=torch.int64)
for L in torch.randint(5, 50, (8,))
]
x = torch.nested_tensor(inputs, device=device, dtype=torch.int64)
emb = torch.nn.Embedding(100, 8, device=device)
y = emb(x)
ys = y.unbind()
for i, inp in enumerate(inputs):
self.assertEqual(emb(inp), ys[i])
@dtypes(torch.float, torch.float16)
def test_to_padded_tensor_simple(self, device, dtype):
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
ts = list(torch.unbind(t))
ts[0] = ts[0][:-1]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
for padding_value in (0, 1):
padded = nt.to_padded_tensor(padding_value)
correct_output = t.clone()
if padding_value == 0:
correct_output[0][-1] = torch.zeros_like(correct_output[0][-1])
else:
correct_output[0][-1] = torch.ones_like(correct_output[0][-1])
self.assertEqual(padded, correct_output)
self.assertEqual(padded.device, torch.device(device))
self.assertEqual(padded.dtype, dtype)
@dtypes(torch.float, torch.float16)
def test_to_padded_tensor_output_size(self, device, dtype):
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
output_size = (4, 6, 5)
ts = list(torch.unbind(t))
ts[0] = ts[0][:-1]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
for padding_value in (0, 1):
padded = nt.to_padded_tensor(padding_value, output_size=output_size)
correct_output = torch.ones(output_size, device=device, dtype=dtype) * padding_value
correct_output[:4:, :4, :4] = t.clone()
if padding_value == 0:
correct_output[0][3] = torch.zeros_like(correct_output[0][3])
else:
correct_output[0][3] = torch.ones_like(correct_output[0][3])
self.assertEqual(padded, correct_output)
self.assertEqual(padded.device, torch.device(device))
self.assertEqual(padded.dtype, dtype)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_dim2(self, device, dtype):
ts = [
torch.randn(160, device=device, dtype=dtype),
torch.randn(1240, device=device, dtype=dtype),
torch.randn(2400, device=device, dtype=dtype),
]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
pad = 42
correct_output = []
for t in ts:
next_output = torch.ones_like(ts[2]) * pad
correct_output.append(next_output)
next_output[:t.size(0)].copy_(t)
correct_output = torch.stack(correct_output)
padded = nt.to_padded_tensor(pad)
self.assertEqual(padded, correct_output)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_dim3(self, device, dtype):
ts = [
torch.randn(16, 21, device=device, dtype=dtype),
torch.randn(24, 32, device=device, dtype=dtype),
torch.randn(40, 53, device=device, dtype=dtype),
]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
pad = 42
correct_output = []
for t in ts:
next_output = torch.ones_like(ts[2]) * pad
correct_output.append(next_output)
next_output[:t.size(0), :t.size(1)].copy_(t)
correct_output = torch.stack(correct_output)
padded = nt.to_padded_tensor(pad)
self.assertEqual(padded, correct_output)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_dim4(self, device, dtype):
ts = [
torch.randn(16, 21, 13, device=device, dtype=dtype),
torch.randn(24, 32, 14, device=device, dtype=dtype),
torch.randn(40, 53, 16, device=device, dtype=dtype),
]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
pad = 42
correct_output = []
for t in ts:
next_output = torch.ones_like(ts[2]) * pad
correct_output.append(next_output)
next_output[:t.size(0), :t.size(1), :t.size(2)].copy_(t)
correct_output = torch.stack(correct_output)
padded = nt.to_padded_tensor(pad)
self.assertEqual(padded, correct_output)
@skipMeta
def test_device_checks(self, device):
nt = torch.nested_tensor([], device=device)
is_cuda = 'cuda' in str(device)
self.assertEqual(nt.is_cuda, is_cuda)
@dtypes(torch.float, torch.float16, torch.double)
def test_nested_tensor_indexing(self, device, dtype):
# edge case: empty nested tensor
nt0 = torch.nested_tensor([])
self.assertRaisesRegex(
RuntimeError,
"cannot index an empty nested tensor",
lambda: nt0[0]
)
# normal case
x0 = torch.randn((2, 5), device=device, dtype=dtype)
x1 = torch.randn((3, 4), device=device, dtype=dtype)
nt = torch.nested_tensor([x0, x1])
# single index: only support integer in the batch dimension
self.assertEqual(nt[0], x0)
self.assertEqual(nt[-1], x1)
self.assertRaises(IndexError, lambda: nt[2])
self.assertRaises(IndexError, lambda: nt[-3])
self.assertRaises(NotImplementedError, lambda: nt[:])
self.assertRaises(NotImplementedError, lambda: nt[None])
self.assertRaises(NotImplementedError, lambda: nt[...])
# tuple of indices: only support integer in the batch dimension
# + all possible indexing in the original tensor dimensions
self.assertEqual(nt[0, 0, 0], x0[0, 0])
self.assertEqual(nt[0, 1, :], x0[1, :])
self.assertEqual(nt[1, ...], x1)
self.assertRaises(IndexError, lambda: nt[1, 4, 2])
self.assertRaises(NotImplementedError, lambda: nt[:, 1, 1])
# make sure indexing returns a view
nt[0].fill_(100.0)
answer = torch.tensor(100.0, device=device, dtype=dtype).expand((2, 5))
self.assertEqual(nt[0], answer)
nt[1, 1, :].fill_(200.0)
answer = torch.tensor(200.0, device=device, dtype=dtype).expand(4)
self.assertEqual(nt[1, 1, :], answer)
# Helper functions for testing elementwise ops
def random_nt(self, device, dtype, num_tensors, max_dims, min_dims=None):
if min_dims is None:
min_dims = tuple([0] * len(max_dims))
ts1 = []
for _ in range(num_tensors):
tensor_dims = tuple([torch.randint(low=min_dim, high=max_dim, size=(1,)).item()
for (min_dim, max_dim) in zip(min_dims, max_dims)])
t1 = torch.randn(tensor_dims, device=device, dtype=dtype)
ts1.append(t1)
return torch.nested_tensor(ts1, device=device, dtype=dtype)
# Helper functions for testing elementwise ops
def random_nt_pair(self, device, dtype, num_tensors, max_dims):
ts1 = []
ts2 = []
for _ in range(num_tensors):
tensor_dims = tuple([torch.randint(low=0, high=max_dim, size=(1,)).item() for max_dim in max_dims])
t1 = torch.randn(tensor_dims, device=device, dtype=dtype)
t2 = torch.randn(tensor_dims, device=device, dtype=dtype)
ts1.append(t1)
ts2.append(t2)
return (torch.nested_tensor(ts1, device=device, dtype=dtype),
torch.nested_tensor(ts2, device=device, dtype=dtype))
def nt_equal(self, nt1, nt2):
self.assertEqual(nt1.dtype, nt2.dtype)
self.assertEqual(nt1.device, nt2.device)
ub1 = nt1.unbind()
ub2 = nt2.unbind()
self.assertEqual(len(ub1), len(ub2))
n = len(ub1)
for i in range(n):
self.assertEqual(ub1[i], ub2[i])
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_add(self, device, dtype):
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested_tensor([t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
out = nt1 + nt2
self.nt_equal(ref, out)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_mul(self, device, dtype):
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested_tensor([t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
out = nt1 * nt2
self.nt_equal(ref, out)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_add_in_place(self, device, dtype):
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested_tensor([t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
nt1 += nt2
self.nt_equal(ref, nt1)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_mul_in_place(self, device, dtype):
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested_tensor([t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
nt1 *= nt2
self.nt_equal(ref, nt1)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_clone(self, device, dtype):
nt1 = self.random_nt(device, dtype, 4, (4, 4), (1, 1))
nt2 = nt1.clone()
# Verify the values match
self.nt_equal(nt1, nt2)
# Verify modifying nt2 doesn't affect nt1
nt2.mul_(nt1)
ub1 = nt1.unbind()
ub2 = nt2.unbind()
for i in range(len(ub1)):
self.assertNotEqual(ub1[i], ub2[i])
nt1.clone(memory_format=torch.preserve_format)
msg = "clone_nested only supports memory format Preserve, but got ChannelsLast instead."
with self.assertRaisesRegex(RuntimeError, msg):
nt1.clone(memory_format=torch.channels_last)
class TestNestedTensorAutograd(TestCase):
def nt_equal(self, nt1, nt2):
self.assertEqual(nt1.dtype, nt2.dtype)
self.assertEqual(nt1.device, nt2.device)
ub1 = nt1.unbind()
ub2 = nt2.unbind()
self.assertEqual(len(ub1), len(ub2))
n = len(ub1)
for i in range(n):
self.assertEqual(ub1[i], ub2[i])
def _create_nested_tensor_from_list(self, requires_grad=False):
return torch.nested_tensor([torch.randn(1, 2, requires_grad=requires_grad),
torch.randn(7, 8, requires_grad=requires_grad)])
def _create_nested_tensor_from_mask(self, requires_grad=False):
data = torch.randn(2, 3, 4, requires_grad=requires_grad)
mask = torch.ones_like(data[:, :, 0]).bool()
return torch._nested_tensor_from_mask(data, mask)
def test_set_requires_grad_from_list(self):
nt = self._create_nested_tensor_from_list()
nt.requires_grad_()
assert nt.requires_grad
def test_set_requires_grad_from_mask(self):
nt = self._create_nested_tensor_from_mask()
nt.requires_grad_()
assert nt.requires_grad
def test_backward_for_add_op(self):
nt_1 = self._create_nested_tensor_from_mask()
nt_2 = self._create_nested_tensor_from_mask()
nt_1.requires_grad_()
c = nt_1 + nt_2
assert nt_1.requires_grad
assert c.requires_grad
grad_output = self._create_nested_tensor_from_mask()
c.backward(grad_output)
# Grad check doesn't work with nested yet.
# d/dnt_1 (nt + nt_1) = 1*grad_output
self.nt_equal(nt_1.grad, grad_output)
instantiate_device_type_tests(TestNestedTensorDeviceType, globals())
if __name__ == '__main__':
run_tests()