forked from sangjoon-park/Medical_X-VL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGeneration.py
executable file
·352 lines (276 loc) · 12.9 KB
/
Generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
'''
* Copyright (c) 2021, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
'''
import argparse
import os
os.environ["TOKENIZERS_PARALLELISM"] = "true"
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import language_evaluation
from dataset.utils import save_result
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from models.model_generation import XVLModel
from models.vit import interpolate_pos_embed
from models.tokenization_bert import BertTokenizer
from dataset.utils import pre_caption, pre_question
import utils
from dataset import create_dataset, create_sampler, create_loader, gen_collate_fn
from scheduler import create_scheduler
from optim import create_optimizer
from ibot_utils import iBOTLoss
from transformers import AutoTokenizer
import ibot_utils
from eval_function import COCOEvalCapDirect
def train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config, fp16_scaler):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss_mlm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
warmup_iterations = warmup_steps * step_size
if args.distributed:
data_loader.sampler.set_epoch(epoch)
for i, (image, findings, image_id) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
optimizer.zero_grad()
image = image.to(device)
text = findings
text_input = tokenizer(text, padding='longest', truncation=True, max_length=180, return_tensors="pt").to(device)
if epoch > 0:
alpha = config['alpha']
else:
alpha = config['alpha'] * min(1, i / len(data_loader))
loss_mlm = model(image, text_input, train=True, alpha=alpha)
loss = loss_mlm
param_norms = None
if fp16_scaler is None:
loss.backward()
if config['clip_grad']:
param_norms = ibot_utils.clip_gradients(model.module.visual_encoder, config['clip_grad'])
ibot_utils.cancel_gradients_last_layer(epoch, model.module.visual_encoder,
config['freeze_last_layer'])
optimizer.step()
else:
fp16_scaler.scale(loss).backward()
if args.clip_grad:
fp16_scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
param_norms = ibot_utils.clip_gradients(model.module.visual_encoder, config['clip_grad'])
ibot_utils.cancel_gradients_last_layer(epoch, model.module.visual_encoder,
config['freeze_last_layer'])
fp16_scaler.step(optimizer)
fp16_scaler.update()
metric_logger.update(loss_mlm=loss_mlm.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if epoch == 0 and i % step_size == 0 and i <= warmup_iterations:
scheduler.step(i // step_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def evaluation(model, data_loader, tokenizer, device, config):
# test
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Generate test set result:'
print_freq = 10
result = {}
answer_input = None
for n, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = batch[0].to(device)
report = batch[1]
ID = batch[2][0]
text = report
# load caption
caption = []
for txt in text:
caption.append(pre_caption(txt, max_words=120))
object_labels = ["" for i in range(len(image))]
gold_caption = caption
topk_ids, topk_probs = model(image, train=False)
for topk_id, topk_prob, gold_caption_list in zip(topk_ids, topk_probs, gold_caption):
ans = tokenizer.decode(topk_id[0]).replace("[SEP]", "").replace("[CLS]", "").replace("[PAD]", "").strip()
result[ID] = {"predicted": ans, "caption": gold_caption_list}
if n % 20 == 0:
print("pred_caption : {} / gold_caption: {}".format(ans, gold_caption_list))
return result
def cal_metric(result_file):
result_list = json.load(open(result_file, "r"))
predicts = []
answers = []
for each in result_list:
predicts.append(each["pred_caption"])
answers.append(each["gold_caption"])
evaluator = language_evaluation.CocoEvaluator(verbose=False)
results = evaluator.run_evaluation(predicts, answers)
print (len(result_list), results)
return results
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
max_epoch = config['schedular']['epochs']
warmup_steps = config['schedular']['warmup_epochs']
fp16_scaler = None
if config['use_fp16']:
fp16_scaler = torch.cuda.amp.GradScaler()
#### Dataset ####
print("Creating Generation dataset")
datasets = create_dataset('generation', config)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True, False], num_tasks, global_rank)
else:
samplers = [None, None]
data_loader, test_loader = create_loader(datasets, samplers,
batch_size=[config['batch_size_train'], config['batch_size_test']],
num_workers=[4, 4], is_trains=[True, False],
collate_fns=[None, None])
url = "microsoft/BiomedVLP-CXR-BERT-specialized"
tokenizer = AutoTokenizer.from_pretrained(url, trust_remote_code=True)
#### Model ####
print("Creating model")
model = XVLModel(config=config, tokenizer=tokenizer)
model = model.to(device)
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
if args.checkpoint:
if not args.evaluate:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
# model.load_state_dict(state_dict)
# print('load checkpoint from %s' % args.checkpoint)
pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder.backbone.pos_embed'],
model.visual_encoder)
state_dict['visual_encoder.backbone.pos_embed'] = pos_embed_reshaped
if config['distill']:
m_pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder_m.backbone.pos_embed'],
model.visual_encoder_m)
state_dict['visual_encoder_m.backbone.pos_embed'] = m_pos_embed_reshaped
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
else:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
msg = model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s' % args.checkpoint)
print(msg)
if config['distill']:
model.copy_params()
print('model parameters are copied.')
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
print("Start training")
start_time = time.time()
# vqa_result = evaluation(model, test_loader, tokenizer, device, config)
# result_file = save_result(vqa_result, args.result_dir, 'vqa_result_epoch10')
#
# # Eval metrics
# cocoEval = COCOEvalCapDirect(vqa_result)
# cocoEval.evaluate()
#
# for metric, score in cocoEval.eval.items():
# print('%s: %.3f' % (metric, score))
for epoch in range(start_epoch, max_epoch):
if epoch > 0:
lr_scheduler.step(epoch + warmup_steps)
if not args.evaluate:
if args.distributed:
data_loader.sampler.set_epoch(epoch)
train_stats = train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler, config,
fp16_scaler)
if args.evaluate:
break
# ########## Val results ##########
# print('>>>>> Validation results')
# vqa_result = evaluation(model, test_loader, tokenizer, device, config)
# result_file = save_result(vqa_result, args.result_dir, 'vqa_result_epoch%d' % epoch)
#
# # Eval metrics
# cocoEval = COCOEvalCapDirect(vqa_result)
# cocoEval.evaluate()
#
# for metric, score in cocoEval.eval.items():
# print('%s: %.3f' % (metric, score))
########## Test results ##########
print('>>>>> Test results')
vqa_result = evaluation(model, test_loader, tokenizer, device, config)
result_file = save_result(vqa_result, args.result_dir, 'vqa_result_epoch%d' % epoch)
# Eval metrics
cocoEval = COCOEvalCapDirect(vqa_result)
cocoEval.evaluate()
for metric, score in cocoEval.eval.items():
print('%s: %.3f' % (metric, score))
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
with open(os.path.join(args.output_dir, "log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
torch.save({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
'epoch': epoch,
}, os.path.join(args.output_dir, 'checkpoint.pth'))
dist.barrier()
generation_results = evaluation(model, test_loader, tokenizer, device, config)
with open('./gen_val_{}.json'.format(args.output_dir.split('/')[-3], config['dataset']), 'w') as f:
json.dump(generation_results, f)
generation_results = evaluation(model, test_loader, tokenizer, device, config)
with open('./gen_test_{}.json'.format(args.output_dir.split('/')[-3], config['dataset']), 'w') as f:
json.dump(generation_results, f)
# Eval metrics
cocoEval = COCOEvalCapDirect(generation_results)
cocoEval.evaluate()
for metric, score in cocoEval.eval.items():
print('%s: %.3f' % (metric, score))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/Generation.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--resume', default=False, type=bool)
parser.add_argument('--output_dir', default='Pretrain/')
parser.add_argument('--text_encoder', default='bert-base-uncased')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
args = parser.parse_args()
args.result_dir = os.path.join(args.output_dir, 'result')
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)