forked from sangjoon-park/Medical_X-VL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathibot_heads.py
executable file
·207 lines (177 loc) · 7.41 KB
/
ibot_heads.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) ByteDance, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import ibot_utils as utils
from ibot_utils import trunc_normal_
class CSyncBatchNorm(nn.SyncBatchNorm):
def __init__(self,
*args,
with_var=False,
**kwargs):
super(CSyncBatchNorm, self).__init__(*args, **kwargs)
self.with_var = with_var
def forward(self, x):
# center norm
self.training = False
if not self.with_var:
self.running_var = torch.ones_like(self.running_var)
normed_x = super(CSyncBatchNorm, self).forward(x)
# udpate center
self.training = True
_ = super(CSyncBatchNorm, self).forward(x)
return normed_x
class PSyncBatchNorm(nn.SyncBatchNorm):
def __init__(self,
*args,
bunch_size,
**kwargs):
procs_per_bunch = min(bunch_size, utils.get_world_size())
assert utils.get_world_size() % procs_per_bunch == 0
n_bunch = utils.get_world_size() // procs_per_bunch
#
ranks = list(range(utils.get_world_size()))
print('---ALL RANKS----\n{}'.format(ranks))
rank_groups = [ranks[i * procs_per_bunch: (i + 1) * procs_per_bunch] for i in range(n_bunch)]
print('---RANK GROUPS----\n{}'.format(rank_groups))
process_groups = [torch.distributed.new_group(pids) for pids in rank_groups]
bunch_id = utils.get_rank() // procs_per_bunch
process_group = process_groups[bunch_id]
print('---CURRENT GROUP----\n{}'.format(process_group))
super(PSyncBatchNorm, self).__init__(*args, process_group=process_group, **kwargs)
class CustomSequential(nn.Sequential):
bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm)
def forward(self, input):
for module in self:
dim = len(input.shape)
if isinstance(module, self.bn_types) and dim > 2:
perm = list(range(dim - 1));
perm.insert(1, dim - 1)
inv_perm = list(range(dim)) + [1];
inv_perm.pop(1)
input = module(input.permute(*perm)).permute(*inv_perm)
else:
input = module(input)
return input
class DINOHead(nn.Module):
def __init__(self, in_dim, out_dim, norm=None, act='gelu', last_norm=None,
nlayers=3, hidden_dim=2048, bottleneck_dim=256, norm_last_layer=True, **kwargs):
super().__init__()
norm = self._build_norm(norm, hidden_dim)
last_norm = self._build_norm(last_norm, out_dim, affine=False, **kwargs)
act = self._build_act(act)
nlayers = max(nlayers, 1)
if nlayers == 1:
if bottleneck_dim > 0:
self.mlp = nn.Linear(in_dim, bottleneck_dim)
else:
self.mlp = nn.Linear(in_dim, out_dim)
else:
layers = [nn.Linear(in_dim, hidden_dim)]
if norm is not None:
layers.append(norm)
layers.append(act)
for _ in range(nlayers - 2):
layers.append(nn.Linear(hidden_dim, hidden_dim))
if norm is not None:
layers.append(norm)
layers.append(act)
if bottleneck_dim > 0:
layers.append(nn.Linear(hidden_dim, bottleneck_dim))
else:
layers.append(nn.Linear(hidden_dim, out_dim))
self.mlp = CustomSequential(*layers)
self.apply(self._init_weights)
if bottleneck_dim > 0:
self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
self.last_layer.weight_g.data.fill_(1)
if norm_last_layer:
self.last_layer.weight_g.requires_grad = False
else:
self.last_layer = None
self.last_norm = last_norm
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.mlp(x)
if self.last_layer is not None:
x = nn.functional.normalize(x, dim=-1, p=2)
x = self.last_layer(x)
if self.last_norm is not None:
x = self.last_norm(x)
return x
def _build_norm(self, norm, hidden_dim, **kwargs):
if norm == 'bn':
norm = nn.BatchNorm1d(hidden_dim, **kwargs)
elif norm == 'syncbn':
norm = nn.SyncBatchNorm(hidden_dim, **kwargs)
elif norm == 'csyncbn':
norm = CSyncBatchNorm(hidden_dim, **kwargs)
elif norm == 'psyncbn':
norm = PSyncBatchNorm(hidden_dim, **kwargs)
elif norm == 'ln':
norm = nn.LayerNorm(hidden_dim, **kwargs)
else:
# assert norm is None, "unknown norm type {}".format(norm)
norm = None
return norm
def _build_act(self, act):
if act == 'relu':
act = nn.ReLU()
elif act == 'gelu':
act = nn.GELU()
else:
assert False, "unknown act type {}".format(act)
return act
class iBOTHead(DINOHead):
def __init__(self, *args, patch_out_dim=8192, norm=None, act='gelu', last_norm=None,
nlayers=3, hidden_dim=2048, bottleneck_dim=256, norm_last_layer=True,
shared_head=False, **kwargs):
super(iBOTHead, self).__init__(*args,
norm=norm,
act=act,
last_norm=last_norm,
nlayers=nlayers,
hidden_dim=hidden_dim,
bottleneck_dim=bottleneck_dim,
norm_last_layer=norm_last_layer,
**kwargs)
if not shared_head:
if bottleneck_dim > 0:
self.last_layer2 = nn.utils.weight_norm(nn.Linear(bottleneck_dim, patch_out_dim, bias=False))
self.last_layer2.weight_g.data.fill_(1)
if norm_last_layer:
self.last_layer2.weight_g.requires_grad = False
else:
self.mlp2 = nn.Linear(hidden_dim, patch_out_dim)
self.last_layer2 = None
self.last_norm2 = self._build_norm(last_norm, patch_out_dim, affine=False, **kwargs)
else:
if bottleneck_dim > 0:
self.last_layer2 = self.last_layer
else:
self.mlp2 = self.mlp[-1]
self.last_layer2 = None
self.last_norm2 = self.last_norm
def forward(self, x):
if len(x.shape) == 2:
return super(iBOTHead, self).forward(x)
if self.last_layer is not None:
x = self.mlp(x)
x = nn.functional.normalize(x, dim=-1, p=2)
x1 = self.last_layer(x[:, 0])
x2 = self.last_layer2(x[:, 1:])
else:
x = self.mlp[:-1](x)
x1 = self.mlp[-1](x[:, 0])
x2 = self.mlp2(x[:, 1:])
if self.last_norm is not None:
x1 = self.last_norm(x1)
x2 = self.last_norm2(x2)
return x1, x2