-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAImoves.py
536 lines (466 loc) · 19.6 KB
/
AImoves.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import backend
import main
import movement
import numpy as np
import random
#efficency improvements
#1. Keep track of all pieces so there is no need to loop all the time
DEPTH = 3
#score for the pieces
#King has a score of 0 since it will be never be captured practically
StrToPieceScore ={"Pawn":1, "Rook":5, "Knight":3, "Bishop":3, "Queen":9, "King":0}
STALEMATE = 0
CHECKMATE = 500
#conversion from pieces names strings into int of pieces
#pawn: 1 Rook: 2 Knight: 3 Bishop: 4 Queen: 5 King: 6
stringsToInt = {"Pawn":1,"Rook":2,"Knight":3,"Bishop":4,"Queen":5,"King":6}
IntToStrings = {v: k for k, v in stringsToInt.items()}
def IntToStringconverter(piece_number):
return IntToStrings[piece_number]
def PieceNameToPieceScoreconverter(piece_name):
return StrToPieceScore[piece_name]
#takes all Legal moves and gamestate
#evaluates legal moves
#select best legal moves and returns it to main
def returnOpponentsMove(gs, LegalMoves):
global bestMove
bestMove = None
#AlphaBeta(gs, DEPTH, LegalMoves, -2000, 2000)
findMoveNegaMaxAlphaBeta(gs, LegalMoves, DEPTH, -2000, 2000, 1 if gs.WhitesTurn else -1)
return bestMove
def recursiveSearchTest(gs, DEPTH, FirstIteration, max_Score, LegalMoves):
breakpoint()
if not FirstIteration:
#changes Turn so best possible Move from opponent can be calculated
gs.WhitesTurn = not gs.WhitesTurn
#get legal moves for the best move made by the opponent
LegalMoves = movement.getLegalMoves(gs)
#recorsion continues as long as DEPTH is more than zero
if DEPTH != 0:
for move in LegalMoves:
movement.makeMove(gs, move)
recursiveSearchTest(gs, DEPTH - 1, FirstIteration, max_Score, LegalMoves)
movement.undoMove(gs)
#end of DEPTH is reached evaluation of the board
if DEPTH == 0:
#changes Color back
gs.WhitesTurn = not gs.WhitesTurn
turnMuliplier = 1 if gs.WhitesTurn else -1
if gs.checkmate:
currentScore = CHECKMATE
#if stalemate is possible score will set to neutral, there move will be only made if own score is worse than 0
elif gs.stalemate:
currentScore = STALEMATE
else:
#score the current made move
currentScore = turnMuliplier * returnScore(gs)
if currentScore > max_Score:
max_Score = currentScore
bestMove = move
return bestMove
def TwoLayerSearch(gs,LegalMoves):
blackMaxScore = -CHECKMATE
turnMuliplier = 1 if gs.WhitesTurn else -1
#black moves
for move in LegalMoves:
movement.makeMove(gs, move)
#important so legal moves from origin are not getting overrided
#change color so legal moves for the other color can be made
LegalMovesOpponent = movement.getLegalMoves(gs)
whiteMaxScore = -CHECKMATE
#white moves
for OpponentMove in LegalMovesOpponent:
turnMuliplier = 1
movement.makeMove(gs, OpponentMove)
#evaluate
if gs.checkmate:
currentScore = CHECKMATE
#if stalemate is possible score will set to neutral, there move will be only made if own score is worse than 0
elif gs.stalemate:
currentScore = STALEMATE
else:
#score the current made move
currentScore = turnMuliplier * returnScore(gs)
if currentScore > whiteMaxScore:
whiteMaxScore = currentScore
#I NEED TO USE WHITE BEST MOVE?
whiteBestMove = OpponentMove
movement.undoMove(gs)
#sort all children
turnMuliplier = -1
if blackMaxScore < turnMuliplier *whiteMaxScore:
blackMaxScore = turnMuliplier *whiteMaxScore
bestBlackMove = move
movement.undoMove(gs)
return bestBlackMove
def MinMax(gs, DEPTH, LegalMoves):
#turn multiplier for MinMax
turnMuliplier = 1 if gs.WhitesTurn else -1
#is in the beginning negative so a better MaxMinScore can be found
#this needs to be fixxed
MaxMinScore = -CHECKMATE
#evaluate board
if DEPTH == 0:
#positive if white negative if black
if gs.checkmate:
currentScore = CHECKMATE * turnMuliplier
#if stalemate is possible score will set to neutral, there move will be only made if own score is worse than 0
elif gs.stalemate:
currentScore = STALEMATE
else:
#score the current made move
currentScore = turnMuliplier * returnScore(gs)
#sorts highest possible score in current legal moves
#a good move is positive for white and black all the time
if currentScore > MaxMinScore:
MaxMinScore = currentScore
return MaxMinScore
#whites layer
if gs.WhitesTurn:
MaxScore = -CHECKMATE
LegalMoves = movement.getLegalMoves(gs)
for move in LegalMoves:
movement.makeMove(gs, move)
Score = turnMuliplier * MinMax(gs, DEPTH-1, LegalMoves)
if Score > MaxScore:
MaxScore = Score
bestMove = move
movement.undoMove(gs)
return MaxScore
#blacks layer
if not gs.WhitesTurn:
MinScore = CHECKMATE
LegalMoves = movement.getLegalMoves(gs)
for move in LegalMoves:
movement.makeMove(gs, move)
#turn Multiplyer needs to be removed
Score = turnMuliplier * MinMax(gs, DEPTH-1, LegalMoves)
if Score > MinScore:
MinScore = Score
bestMove = move
movement.undoMove(gs)
return bestMove
def MinMax2(gs, depth, LegalMoves):
#breakpoint()
#using global for best move
global bestMove
#turn multiplier for MinMax
turnMuliplier = 1 #if gs.WhitesTurn else -1
#evaluate board
if depth == 0:
#positive if white negative if black
if gs.checkmate:
currentScore = CHECKMATE * turnMuliplier
#if stalemate is possible score will set to neutral, there move will be only made if own score is worse than 0
elif gs.stalemate:
currentScore = STALEMATE
else:
#score the current made move
currentScore = turnMuliplier * returnScore(gs)
#returns score of current node
return currentScore
#whites layer
if gs.WhitesTurn:
MaxScore = -CHECKMATE
LegalMoves = movement.getLegalMoves(gs)
for move in LegalMoves:
movement.makeMove(gs, move)
Score = MinMax2(gs, depth-1, LegalMoves)
if Score > MaxScore:
MaxScore = Score
if depth == DEPTH:
bestMove = move
movement.undoMove(gs)
return MaxScore
#blacks layer
if not gs.WhitesTurn:
MinScore = CHECKMATE
LegalMoves = movement.getLegalMoves(gs)
for move in LegalMoves:
movement.makeMove(gs, move)
#turn Multiplyer needs to be removed
Score = MinMax2(gs, depth-1, LegalMoves)
if Score < MinScore:
MinScore = Score
if depth == DEPTH:
bestMove = move
movement.undoMove(gs)
return MinScore
#for child in position it should be move in legal moves
#make move and undo move
def findMoveNegaMaxAlphaBeta(gs, LegalMoves, depth, alpha, beta, turnMultiplier):
global bestMove#, counter
#counter += 1
if depth == 0:
#positive if white negative if black
if gs.checkmate:
currentScore = CHECKMATE * turnMultiplier
print("checkmate2")
#if stalemate is possible score will set to neutral, there move will be only made if own score is worse than 0
elif gs.stalemate:
currentScore = STALEMATE
print("stalemate2")
else:
#score the current made move
currentScore = turnMultiplier * returnScore(gs)
#returns score of current node
return currentScore
maxScore = -CHECKMATE
for move in LegalMoves:
movement.makeMove(gs, move)
LegalMoves = movement.getLegalMoves(gs)
score = -findMoveNegaMaxAlphaBeta(gs, LegalMoves, depth-1,-beta, -alpha, -turnMultiplier)
if score > maxScore:
maxScore = score
if depth == DEPTH:
bestMove = move
movement.undoMove(gs)
if maxScore > alpha:
alpha = maxScore
if alpha >= beta:
break
return maxScore
def AlphaBeta(gs, depth, LegalMoves, alpha, beta):
#breakpoint()
#using global for best move
global bestMove
#turn multiplier for MinMax
turnMuliplier = 1 #if gs.WhitesTurn else -1
#evaluate board
if depth == 0:
#positive if white negative if black
if gs.checkmate:
currentScore = CHECKMATE * turnMuliplier
print("checkmate2")
#if stalemate is possible score will set to neutral, there move will be only made if own score is worse than 0
elif gs.stalemate:
currentScore = STALEMATE
print("stalemate2")
else:
#score the current made move
currentScore = turnMuliplier * returnScore(gs)
#returns score of current node
return currentScore
#whites layer
if gs.WhitesTurn:
MaxScore = -CHECKMATE
LegalMoves = movement.getLegalMoves(gs)
for move in LegalMoves:
movement.makeMove(gs, move)
if depth <2 :
#add in check here
movement.CheckmateandStalemate(gs, LegalMoves)
Score = AlphaBeta(gs, depth-1, LegalMoves, beta, alpha)
if Score >= MaxScore:
MaxScore = Score
if depth == DEPTH:
bestMove = move
movement.undoMove(gs)
if MaxScore > alpha:
alpha = MaxScore
if alpha >= beta:
break
return MaxScore
#blacks layer
if not gs.WhitesTurn:
MinScore = CHECKMATE
LegalMoves = movement.getLegalMoves(gs)
for move in LegalMoves:
movement.makeMove(gs, move)
if depth <2:
#add in check here
movement.CheckmateandStalemate(gs, LegalMoves)
#turn Multiplyer needs to be removed
Score = AlphaBeta(gs, depth-1, LegalMoves, beta, alpha)
if Score <= MinScore:
MinScore = Score
if depth == DEPTH:
bestMove = move
movement.undoMove(gs)
if MinScore > alpha:
alpha = MinScore
if alpha >= beta:
break
return MinScore
#for child in position it should be move in legal moves
#make move and undo move
#return score of current gameboard
#white wants a positive score, black wants a negative score
def returnScore(gs):
score = 0
white_score = 0
black_score = 0
POSITION_WEIGHT = 0.1
#evaluate the board
for rank in range(8):
for file in range(8):
#white pieces
if int(str(gs.board[rank][file])[0]) == 1:
piece_name = IntToStringconverter(int(str(gs.board[rank][file])[1]))
piece_score = PieceNameToPieceScoreconverter(piece_name)
#position
if piece_name == "Pawn":
position_score = whitePawnMap[rank][file]
if piece_name == "Rook":
position_score = whiteRookMap[rank][file]
if piece_name == "Knight":
position_score = whiteKnightMap[rank][file]
if piece_name == "Bishop":
position_score = whiteBishopMap[rank][file]
if piece_name == "Queen":
position_score = whiteQueenMap[rank][file]
if piece_name == "King":
position_score = whiteKingMap[rank][file]
white_score = white_score + piece_score + position_score * POSITION_WEIGHT
#black pieces
elif int(str(gs.board[rank][file])[0]) == 2:
piece_name = IntToStringconverter(int(str(gs.board[rank][file])[1]))
piece_score = PieceNameToPieceScoreconverter(piece_name)
#position
if piece_name == "Pawn":
position_score = blackPawnMap[rank][file]
if piece_name == "Rook":
position_score = blackRookMap[rank][file]
if piece_name == "Knight":
position_score = blackKnightMap[rank][file]
if piece_name == "Bishop":
position_score = blackBishopMap[rank][file]
if piece_name == "Queen":
position_score = blackQueenMap[rank][file]
if piece_name == "King":
position_score = blackKingMap[rank][file]
black_score = black_score + piece_score + position_score * POSITION_WEIGHT
score = white_score - black_score
return score
#scoring Maps
#Pawn want to advance and also protect King Side
blackPawnMap =np.array ([[0, 0, 0, 0, 0, 0, 0, 0 ],
[1, 0, 1, 0, 0, 1, 0, 1 ],
[1, 2, 1, 1, 1, 1, 2, 1 ],
[3, 3, 3, 4, 4, 3, 3, 3 ],
[5, 5, 5, 6, 6, 5, 5, 5 ],
[7, 7, 7, 7, 7, 7, 7, 7 ],
[9, 9, 9, 9, 9, 9, 9, 9 ],
[3, 3, 3, 3, 3, 3, 3, 3 ]])
whitePawnMap =np.array([[3, 3, 3, 3, 3, 3, 3, 3 ],
[9, 9, 9, 9, 9, 9, 9, 9 ],
[7, 7, 7, 7, 7, 7, 7, 7 ],
[5, 5, 5, 6, 6, 5, 5, 5 ],
[3, 3, 3, 4, 4, 3, 3, 3 ],
[1, 2, 1, 1, 1, 1, 2, 1 ],
[1, 0, 1, 0, 0, 1, 0, 1 ],
[0, 0, 0, 0, 0, 0, 0, 0 ]])
blackRookMap =np.array([[0, 0, 0, 2, 1, 4, 0, 0 ],
[2, 2, 2, 2, 2, 2, 2, 2 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[5, 5, 5, 5, 5, 5, 5, 5 ],
[2, 2, 2, 2, 2, 2, 2, 2 ]])
whiteRookMap =np.array([[2, 2, 2, 2, 2, 2, 2, 2 ],
[5, 5, 5, 5, 5, 5, 5, 5 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[2, 2, 2, 2, 2, 2, 2, 2 ],
[0, 0, 0, 2, 1, 4, 0, 0 ]])
blackKnightMap=np.array([[0, 0, 0, 0, 0, 0, 0, 0 ],
[1, 1, 1, 1, 1, 1, 1, 1 ],
[1, 2, 2, 2, 2, 2, 2, 1 ],
[1, 2, 3, 3, 3, 3, 2, 1 ],
[1, 2, 3, 3, 3, 3, 2, 1 ],
[1, 2, 2, 2, 2, 2, 2, 1 ],
[1, 1, 1, 1, 1, 1, 1, 1 ],
[0, 0, 0, 0, 0, 0, 0, 0 ]])
whiteKnightMap=np.array([[0, 0, 0, 0, 0, 0, 0, 0 ],
[1, 1, 1, 1, 1, 1, 1, 1 ],
[1, 2, 2, 2, 2, 2, 2, 1 ],
[1, 2, 3, 3, 3, 3, 2, 1 ],
[1, 2, 3, 3, 3, 3, 2, 1 ],
[1, 2, 2, 2, 2, 2, 2, 1 ],
[1, 1, 1, 1, 1, 1, 1, 1 ],
[0, 0, 0, 0, 0, 0, 0, 0 ]])
blackBishopMap =np.array([[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 1, 1, 0, 0, 0 ],
[2, 1, 1, 2, 2, 1, 1, 2 ],
[1, 1, 5, 3, 3, 5, 1, 1 ],
[1, 4, 3, 3, 3, 3, 4, 1 ],
[4, 2, 2, 2, 2, 2, 2, 4 ],
[1, 1, 1, 1, 1, 1, 1, 1 ],
[1, 1, 1, 1, 1, 1, 1, 1 ]])
whiteBishopMap = np.array([[1, 1, 1, 1, 1, 1, 1, 1 ],
[1, 1, 1, 1, 1, 1, 1, 1 ],
[4, 2, 2, 2, 2, 2, 2, 4 ],
[1, 4, 3, 3, 3, 3, 4, 1 ],
[1, 1, 5, 3, 3, 5, 1, 1 ],
[2, 1, 1, 2, 2, 1, 1, 2 ],
[0, 0, 0, 1, 1, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ]])
blackQueenMap=np.array([[0, 0, 0, 0, 0, 0, 0, 0 ],
[1, 1, 1, 1, 1, 1, 1, 1 ],
[2, 1, 1, 2, 2, 1, 1, 2 ],
[1, 1, 5, 3, 3, 5, 1, 1 ],
[1, 4, 3, 3, 3, 3, 4, 1 ],
[4, 2, 2, 2, 2, 2, 2, 4 ],
[5, 5, 5, 5, 5, 5, 5, 5 ],
[3, 3, 3, 3, 3, 3, 3, 3 ]])
whiteQueenMap=np.array([[3, 3, 3, 3, 3, 3, 3, 3 ],
[5, 5, 5, 5, 5, 5, 5, 5 ],
[4, 2, 2, 2, 2, 2, 2, 4 ],
[1, 4, 3, 3, 3, 3, 4, 1 ],
[1, 1, 5, 3, 3, 5, 1, 1 ],
[2, 1, 1, 2, 2, 1, 1, 2 ],
[1, 1, 1, 1, 1, 1, 1, 1 ],
[0, 0, 0, 0, 0, 0, 0, 0 ]])
blackKingMap =np.array([[1, 0, 3, 0, 0, 2, 4, 2 ],
[0, 1, 0, 0, 0, 1, 1, 1 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ]])
whiteKingMap =np.array([[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 0, 0, 0, 0, 0, 0, 0 ],
[0, 1, 0, 0, 0, 1, 1, 1 ],
[1, 0, 3, 0, 0, 2, 4, 2 ]])
def getRandomMove(gs, LegalMoves):
a = 0
#no moves possible
if len(LegalMoves) == 0:
return None
elif len(LegalMoves) == 1:
return LegalMoves[0]
if len(LegalMoves) > a:
while a<3:
if len(LegalMoves) > a:
a = a+1
if len(LegalMoves) > 0:
randomNumber = random.randrange(0, len(LegalMoves)-1)
#move = LegalMoves[randomNumber]
move = LegalMoves[a]
movement.makeMove(gs, move)
#movement.undoMove(gs)
return LegalMoves[randomNumber]
def getRandomMove2(gs, LegalMoves):
if len(LegalMoves) > 1:
randomNumber = random.randrange(0, len(LegalMoves)-1)
movement.makeMove(gs, LegalMoves[randomNumber])
movement.undoMove(gs)
return LegalMoves[randomNumber]
#no moves possible
elif len(LegalMoves) == 0:
return None
# just one move is possible
else:
return LegalMoves[0]
def evaluatePieces():
pass
def evaluatePosition():
pass