-
Notifications
You must be signed in to change notification settings - Fork 467
/
Copy pathautoencoder.py
311 lines (260 loc) · 11.9 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import torch
import torch.nn as nn
import torch.nn.functional as F
import scipy.sparse as sp
import numpy as np
import torch.nn.init as init
class InputDropout(nn.Module):
def __init__(self, keep_prob):
super(InputDropout, self).__init__()
self.p = keep_prob
def forward(self, inputs):
x = inputs.clone()
if self.training:
random_tensor = self.p + torch.rand((inputs.size(0),))
dropout_mask = torch.floor(random_tensor).bool()
x[~dropout_mask] = 0.
return x / self.p
else:
return x
class StackGCNEncoder(nn.Module):
def __init__(self, input_dim, output_dim, num_support,
dropout=0.,
use_bias=False, activation=F.relu):
"""对得到的每类评分使用级联的方式进行聚合
Args:
----
input_dim (int): 输入的特征维度
output_dim (int): 输出的特征维度,需要output_dim % num_support = 0
num_support (int): 评分的类别数,比如1~5分,值为5
use_bias (bool, optional): 是否使用偏置. Defaults to False.
activation (optional): 激活函数. Defaults to F.relu.
"""
super(StackGCNEncoder, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.num_support = num_support
self.dropout = dropout
self.use_bias = use_bias
self.activation = activation
assert output_dim % num_support == 0
self.weight = nn.Parameter(torch.Tensor(input_dim, output_dim))
if self.use_bias:
self.bias_user = nn.Parameter(torch.Tensor(output_dim, ))
self.bias_item = nn.Parameter(torch.Tensor(output_dim, ))
self.dropout = InputDropout(1 - dropout)
self.reset_parameters()
def reset_parameters(self):
init.xavier_uniform_(self.weight)
if self.use_bias:
init.zeros_(self.bias_user)
init.zeros_(self.bias_item)
def forward(self, user_supports, item_supports, user_inputs, item_inputs):
"""StackGCNEncoder计算逻辑
Args:
user_supports (list of torch.sparse.FloatTensor):
归一化后每个评分等级对应的用户与商品邻接矩阵
item_supports (list of torch.sparse.FloatTensor):
归一化后每个评分等级对应的商品与用户邻接矩阵
user_inputs (torch.Tensor): 用户特征的输入
item_inputs (torch.Tensor): 商品特征的输入
Returns:
[torch.Tensor]: 用户的隐层特征
[torch.Tensor]: 商品的隐层特征
"""
assert len(user_supports) == len(item_supports) == self.num_support
user_inputs = self.dropout(user_inputs)
item_inputs = self.dropout(item_inputs)
user_hidden = []
item_hidden = []
weights = torch.split(self.weight, self.output_dim//self.num_support, dim=1)
for i in range(self.num_support):
tmp_u = torch.matmul(user_inputs, weights[i])
tmp_v = torch.matmul(item_inputs, weights[i])
tmp_user_hidden = torch.sparse.mm(user_supports[i], tmp_v)
tmp_item_hidden = torch.sparse.mm(item_supports[i], tmp_u)
user_hidden.append(tmp_user_hidden)
item_hidden.append(tmp_item_hidden)
user_hidden = torch.cat(user_hidden, dim=1)
item_hidden = torch.cat(item_hidden, dim=1)
user_outputs = self.activation(user_hidden)
item_outputs = self.activation(item_hidden)
if self.use_bias:
user_outputs += self.bias_user
item_outputs += self.bias_item
return user_outputs, item_outputs
class SumGCNEncoder(nn.Module):
def __init__(self, input_dim, output_dim, num_support,
dropout=0.,
use_bias=False, activation=F.relu):
"""对得到的每类评分使用求和的方式进行聚合
Args:
input_dim (int): 输入的特征维度
output_dim (int): 输出的特征维度,需要output_dim % num_support = 0
num_support (int): 评分的类别数,比如1~5分,值为5
use_bias (bool, optional): 是否使用偏置. Defaults to False.
activation (optional): 激活函数. Defaults to F.relu.
"""
super(SumGCNEncoder, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.num_support = num_support
self.use_bias = use_bias
self.activation = activation
self.weight = nn.Parameter(torch.Tensor(
input_dim, output_dim * num_support))
if self.use_bias:
self.bias_user = nn.Parameter(torch.Tensor(output_dim, ))
self.bias_item = nn.Parameter(torch.Tensor(output_dim, ))
self.dropout = InputDropout(1 - dropout)
self.reset_parameters()
def reset_parameters(self):
init.xavier_uniform_(self.weight)
if self.use_bias:
init.zeros_(self.bias_user)
init.zeros_(self.bias_item)
def forward(self, user_supports, item_supports, user_inputs, item_inputs):
"""SumGCNEncoder计算逻辑
Args:
user_supports (list of torch.sparse.FloatTensor):
归一化后每个评分等级对应的用户与商品邻接矩阵
item_supports (list of torch.sparse.FloatTensor):
归一化后每个评分等级对应的商品与用户邻接矩阵
user_inputs (torch.Tensor): 用户特征的输入
item_inputs (torch.Tensor): 商品特征的输入
Returns:
[torch.Tensor]: 用户的隐层特征
[torch.Tensor]: 商品的隐层特征
"""
assert len(user_supports) == len(item_supports) == self.num_support
user_inputs = self.dropout(user_inputs)
item_inputs = self.dropout(item_inputs)
user_hidden = []
item_hidden = []
weights = torch.split(self.weight, self.output_dim, dim=1)
for i in range(self.num_support):
w = sum(weights[:(i + 1)])
tmp_u = torch.matmul(user_inputs, w)
tmp_v = torch.matmul(item_inputs, w)
tmp_user_hidden = torch.sparse.mm(user_supports[i], tmp_v)
tmp_item_hidden = torch.sparse.mm(item_supports[i], tmp_u)
user_hidden.append(tmp_user_hidden)
item_hidden.append(tmp_item_hidden)
user_hidden, item_hidden = sum(user_hidden), sum(item_hidden)
user_outputs = self.activation(user_hidden)
item_outputs = self.activation(item_hidden)
if self.use_bias:
user_outputs += self.bias_user
item_outputs += self.bias_item
return user_outputs, item_outputs
class FullyConnected(nn.Module):
def __init__(self, input_dim, output_dim, dropout=0.,
use_bias=False, activation=F.relu,
share_weights=False):
"""非线性变换层
Args:
----
input_dim (int): 输入的特征维度
output_dim (int): 输出的特征维度,需要output_dim % num_support = 0
use_bias (bool, optional): 是否使用偏置. Defaults to False.
activation (optional): 激活函数. Defaults to F.relu.
share_weights (bool, optional): 用户和商品是否共享变换权值. Defaults to False.
"""
super(FullyConnected, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.use_bias = use_bias
self.activation = activation
self.share_weights = share_weights
if not share_weights:
self.weights_u = nn.Parameter(torch.Tensor(input_dim, output_dim))
self.weights_v = nn.Parameter(torch.Tensor(input_dim, output_dim))
if use_bias:
self.user_bias = nn.Parameter(torch.Tensor(output_dim))
self.item_bias = nn.Parameter(torch.Tensor(output_dim))
else:
self.weights_u = nn.Parameter(torch.Tensor(input_dim, output_dim))
self.weights_v = self.weights_u
if use_bias:
self.user_bias = nn.Parameter(torch.Tensor(output_dim))
self.item_bias = self.user_bias
self.dropout = nn.Dropout(dropout)
self.reset_parameters()
def reset_parameters(self):
if not self.share_weights:
init.xavier_uniform_(self.weights_u)
init.xavier_uniform_(self.weights_v)
if self.use_bias:
init.normal_(self.user_bias, std=0.5)
init.normal_(self.item_bias, std=0.5)
else:
init.xavier_uniform_(self.weights_u)
if self.use_bias:
init.normal_(self.user_bias, std=0.5)
def forward(self, user_inputs, item_inputs):
"""前向传播
Args:
user_inputs (torch.Tensor): 输入的用户特征
item_inputs (torch.Tensor): 输入的商品特征
Returns:
[torch.Tensor]: 输出的用户特征
[torch.Tensor]: 输出的商品特征
"""
x_u = self.dropout(user_inputs)
x_u = torch.matmul(x_u, self.weights_u)
x_v = self.dropout(item_inputs)
x_v = torch.matmul(x_v, self.weights_v)
u_outputs = self.activation(x_u)
v_outputs = self.activation(x_v)
if self.use_bias:
u_outputs += self.user_bias
v_outputs += self.item_bias
return u_outputs, v_outputs
class Decoder(nn.Module):
def __init__(self, input_dim, num_weights, num_classes, dropout=0., activation=F.relu):
"""解码器
Args:
----
input_dim (int): 输入的特征维度
num_weights (int): basis weight number
num_classes (int): 总共的评分级别数,eg. 5
"""
super(Decoder, self).__init__()
self.input_dim = input_dim
self.num_weights = num_weights
self.num_classes = num_classes
self.activation = activation
self.weight = nn.ParameterList([nn.Parameter(torch.Tensor(input_dim, input_dim))
for _ in range(num_weights)])
self.weight_classifier = nn.Parameter(torch.Tensor(num_weights, num_classes))
self.dropout = nn.Dropout(dropout)
self.reset_parameters()
def reset_parameters(self):
for i in range(len(self.weight)):
init.orthogonal_(self.weight[i], gain=1.1)
init.xavier_uniform_(self.weight_classifier)
def forward(self, user_inputs, item_inputs, user_indices, item_indices):
"""计算非归一化的分类输出
Args:
user_inputs (torch.Tensor): 用户的隐层特征
item_inputs (torch.Tensor): 商品的隐层特征
user_indices (torch.LongTensor):
所有交互行为中用户的id索引,与对应的item_indices构成一条边,shape=(num_edges, )
item_indices (torch.LongTensor):
所有交互行为中商品的id索引,与对应的user_indices构成一条边,shape=(num_edges, )
Returns:
[torch.Tensor]: 未归一化的分类输出,shape=(num_edges, num_classes)
"""
user_inputs = self.dropout(user_inputs)
item_inputs = self.dropout(item_inputs)
user_inputs = user_inputs[user_indices]
item_inputs = item_inputs[item_indices]
basis_outputs = []
for i in range(self.num_weights):
tmp = torch.matmul(user_inputs, self.weight[i])
out = torch.sum(tmp * item_inputs, dim=1, keepdim=True)
basis_outputs.append(out)
basis_outputs = torch.cat(basis_outputs, dim=1)
outputs = torch.matmul(basis_outputs, self.weight_classifier)
outputs = self.activation(outputs)
return outputs