|
| 1 | +#!/usr/bin/env python3 |
| 2 | +# fix_and_test_tokenizer.py |
| 3 | + |
| 4 | +from transformers import GPT2Tokenizer |
| 5 | +import torch |
| 6 | + |
| 7 | +def load_tokenizer(tokenizer_dir): |
| 8 | + tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_dir) |
| 9 | + # Ensure there is a padding token |
| 10 | + if tokenizer.pad_token is None: |
| 11 | + tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
| 12 | + tokenizer.save_pretrained(tokenizer_dir) |
| 13 | + print("Tokenizer loaded successfully.") |
| 14 | + return tokenizer |
| 15 | + |
| 16 | +def identify_and_fix_problematic_tokens(tokenizer, prompt, tokenizer_dir): |
| 17 | + inputs = tokenizer(prompt, return_tensors=None, padding=True, truncation=True, max_length=512) |
| 18 | + print(f"Tokenized inputs without return_tensors: {inputs}") |
| 19 | + |
| 20 | + prompt_words = prompt.split() |
| 21 | + problematic_tokens = [] |
| 22 | + for i, token_id in enumerate(inputs['input_ids']): |
| 23 | + if token_id is None and i < len(prompt_words): |
| 24 | + problematic_tokens.append(prompt_words[i]) |
| 25 | + print(f"Problematic token at position {i}: '{prompt_words[i]}'") |
| 26 | + |
| 27 | + if problematic_tokens: |
| 28 | + added_tokens_count = tokenizer.add_tokens(problematic_tokens) |
| 29 | + tokenizer.save_pretrained(tokenizer_dir) |
| 30 | + print(f"Added {added_tokens_count} tokens to the vocabulary.") |
| 31 | + return True |
| 32 | + return False |
| 33 | + |
| 34 | +def test_tokenizer(tokenizer, prompt): |
| 35 | + try: |
| 36 | + # Manually ensure that None values are replaced |
| 37 | + inputs = tokenizer(prompt, return_tensors=None, padding=True, truncation=True) |
| 38 | + inputs['input_ids'] = [id if id is not None else tokenizer.pad_token_id for id in inputs['input_ids']] |
| 39 | + |
| 40 | + # Convert list to tensor manually to ensure correct formatting |
| 41 | + input_ids_tensor = torch.tensor([inputs['input_ids']], dtype=torch.long) |
| 42 | + |
| 43 | + print(f"Tokenized inputs manually converted to tensor: {input_ids_tensor}") |
| 44 | + |
| 45 | + decoded_text = tokenizer.decode(input_ids_tensor[0], skip_special_tokens=True) |
| 46 | + print(f"Decoded text: {decoded_text}") |
| 47 | + except Exception as e: |
| 48 | + print(f"Error in tokenizer test: {e}") |
| 49 | + |
| 50 | +if __name__ == "__main__": |
| 51 | + tokenizer_dir = "./converted_model" |
| 52 | + prompt = "Hei, miten voit?" |
| 53 | + |
| 54 | + tokenizer = load_tokenizer(tokenizer_dir) |
| 55 | + |
| 56 | + if identify_and_fix_problematic_tokens(tokenizer, prompt, tokenizer_dir): |
| 57 | + tokenizer = load_tokenizer(tokenizer_dir) # Reload tokenizer after updates |
| 58 | + test_tokenizer(tokenizer, prompt) |
| 59 | + |
| 60 | + |
| 61 | +# == (old method) == |
| 62 | +# #!/usr/bin/env python3 |
| 63 | +# # fix_and_test_tokenizer.py |
| 64 | + |
| 65 | +# from transformers import GPT2Tokenizer |
| 66 | +# import json |
| 67 | + |
| 68 | +# def load_tokenizer(tokenizer_dir): |
| 69 | +# tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_dir) |
| 70 | + |
| 71 | +# # Add a padding token if it doesn't exist |
| 72 | +# if tokenizer.pad_token is None: |
| 73 | +# tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
| 74 | + |
| 75 | +# print("Tokenizer loaded successfully.") |
| 76 | +# return tokenizer |
| 77 | + |
| 78 | +# def identify_problematic_tokens(tokenizer, prompt): |
| 79 | +# inputs = tokenizer(prompt, padding=True, truncation=True, max_length=512, return_tensors=None) |
| 80 | +# print(f"Tokenized inputs without return_tensors: {inputs}") |
| 81 | + |
| 82 | +# problematic_tokens = [] |
| 83 | +# prompt_tokens = prompt.split() |
| 84 | +# for i, token_id in enumerate(inputs['input_ids']): |
| 85 | +# if token_id is None: |
| 86 | +# token_position = min(i, len(prompt_tokens) - 1) |
| 87 | +# problematic_token = prompt_tokens[token_position] |
| 88 | +# problematic_tokens.append(problematic_token) |
| 89 | +# print(f"Problematic token at position {i}: '{problematic_token}'") |
| 90 | + |
| 91 | +# return problematic_tokens |
| 92 | + |
| 93 | +# def add_missing_tokens(vocab_path, tokens): |
| 94 | +# try: |
| 95 | +# with open(vocab_path, 'r', encoding='utf-8') as vocab_file: |
| 96 | +# vocab = json.load(vocab_file) |
| 97 | + |
| 98 | +# current_index = max(vocab.values()) + 1 |
| 99 | + |
| 100 | +# for token in tokens: |
| 101 | +# if token not in vocab: |
| 102 | +# vocab[token] = current_index |
| 103 | +# print(f"Adding token '{token}' with index {current_index}") |
| 104 | +# current_index += 1 |
| 105 | + |
| 106 | +# with open(vocab_path, 'w', encoding='utf-8') as vocab_file: |
| 107 | +# json.dump(vocab, vocab_file, ensure_ascii=False, indent=2) |
| 108 | + |
| 109 | +# print(f"Added {len(tokens)} tokens to the vocabulary.") |
| 110 | +# except Exception as e: |
| 111 | +# print(f"Error adding tokens to vocabulary: {e}") |
| 112 | + |
| 113 | +# def test_tokenizer(tokenizer, prompt): |
| 114 | +# try: |
| 115 | +# inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True) |
| 116 | +# print(f"Tokenized inputs: {inputs}") |
| 117 | + |
| 118 | +# decoded_text = tokenizer.decode(inputs['input_ids'][0], skip_special_tokens=True) |
| 119 | +# print(f"Decoded text: {decoded_text}") |
| 120 | + |
| 121 | +# except Exception as e: |
| 122 | +# print(f"Error in tokenizer test: {e}") |
| 123 | + |
| 124 | +# if __name__ == "__main__": |
| 125 | +# tokenizer_dir = "./converted_model" # Path to your tokenizer files directory |
| 126 | +# vocab_path = "./converted_model/vocab.json" |
| 127 | +# prompt = "Hei, miten voit?" |
| 128 | + |
| 129 | +# tokenizer = load_tokenizer(tokenizer_dir) |
| 130 | +# problematic_tokens = identify_problematic_tokens(tokenizer, prompt) |
| 131 | + |
| 132 | +# if problematic_tokens: |
| 133 | +# add_missing_tokens(vocab_path, problematic_tokens) |
| 134 | +# tokenizer = load_tokenizer(tokenizer_dir) # Reload tokenizer after updating vocab |
| 135 | +# test_tokenizer(tokenizer, prompt) |
| 136 | +# else: |
| 137 | +# print("No problematic tokens found.") |
| 138 | +# test_tokenizer(tokenizer, prompt) |
0 commit comments